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File system forensics

Ext4 is a popular file system used by Android and many Linux distributions. With its rising pervasiveness,
anti-forensic techniques like data hiding may be used to conceal data. This paper analyzes the feasibility
of using timestamps of the ext4 file system to hide data. First, we examine the usage, the structure and
the capacity of the available timestamps with a special focus on their sub-second granularity. The results
reveal that the nanoseconds part of the ext4 timestamps can be used to build a system with stegano-
graphic strength. Second, we devise an ext4 anti-forensic technique that offers secrecy of the hidden data

Ext4 and easy usability in a wide range of scenarios. We provide a set of requirements (e.g., indistinguishability

Nanosecond timestamps

of regular and tampered timestamps) and a proof-of-concept implementation that is able to conceal

arbitrary data within the file system timestamps. The evaluation shows that our implementation satisfies

our requirements and actually works in practice.

© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The rise of cybercrime as well as the growing amount of anti-
forensic tools demand a more intense debate on the problem of
anti-forensics. This requires a more comprehensive analysis of
current anti-forensic threats, in order to gather reliable evidence
during digital forensic investigations and to develop anti-anti-
forensic techniques, i.e., countermeasures and mitigation strategies
against the anti-forensic methods, tools and techniques. However,
the total number of research papers focused on anti-forensics is
limited, as stated by Baggili et al. (2012), and is outnumbered by the
number of websites about how to exploit the forensic process, as
put forth by Harris (2006).

Conlan et al. (2016) shared an overview, which includes data on
308 collected anti-forensic tools and assigns them to an anti-forensic
category. According to the quantitative analysis of the data set, the
majority of tools are assigned to the data hiding category. This is due to
the increasing need for protected information exchange and storage.

Data hiding is possible on different abstraction layers, e.g., the
hard disk or the file system layer. Besides the traditional hiding
places in file systems, e.g., file and directory slack space (Carrier,
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2005), reserved areas (Piper et al, 2005) for future use or
leftovers from earlier versions, the misuse of existing data struc-
tures is another effective way to hide data in the file system.

Ext4 is a popular file system used by Android and many Linux
distributions. With its rising pervasiveness, anti-forensic tech-
niques like data hiding may be used to conceal data. This paper
addresses the anti-forensic problem by presenting a new potential
hiding place in ext4 volumes. Regarding the forensic investigation,
it is important to know about such places, especially due to the
extensive use of ext4 in smartphones since Android 2.3 Ginger-
bread (Ts'o, 2010).

Our approach makes use of a data structure in the inode table.
The inode table contains all the metadata of a file or directory
(e.g., the file owner, permissions, timestamps). Hidden data that
matches the normal internal structures will not be recognized by a
digital forensics analysis tool, since there is no inconsistency and
thus nothing unexpected (e.g., if e2fsck interprets timestamps
with hidden data as ordinary timestamps). Without any warnings
given by existing forensic tools or the file system check, hidden data
is hard to find.

Instead of encrypting the confidential data (e.g., passwords,
personal data) with well-known cryptographic techniques, a steg-
anographic approach is considered here, since steganography does
not leave any evidence of information exchange and therefore does
not arouse the interest of the forensic investigator. If cryptography
is used instead of steganography, third parties can recognize an

1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:thomas.goebel@h-da.de
mailto:harald.baier@h-da.de
http://www.dasec.h-da.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2018.01.014&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2018.01.014
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2018.01.014
https://doi.org/10.1016/j.diin.2018.01.014

S112 T. Gobel, H. Baier / Digital Investigation 24 (2018) S111-S120

existing communication, but can not read the contents (Hassan and
Hijazi, 2016). Steganography is often considered when censorships
or restrictions of governments and other opponents need to be
circumvented.

The use of file system timestamps as a steganographic channel
was proposed by Neuner et al. (2016), who showed in case of NTFS,
how the unused capacity in timestamps can be used to create a
steganographic channel to hide data. As future work Neuner et al.
(2016) considered porting their hiding approach to other file
systems, but have not yet studied this for ext4.

Contribution

The contribution of this paper is to examine the steganographic
capabilities of timestamps in the ext4 file system. More specifically,
we make the following contributions:

1. The structure and usage of ext4 file system timestamps are
analyzed. We explore their applicability as an effective means
for data hiding in environments such as Linux operating systems
and Android devices.

2. A proof-of-concept implementation is developed. The most
recent version of the source code can be downloaded from the
GitHub website https://github.com/dasec/ext4-timestamp-
magic. The implementation confirms that data can be securely
hidden in ext4 volumes without interrupting the normal system
operation, that is, the file system is fully accessible to normal
usage. Furthermore, our implementation is robust in the sense
that hidden data must be restorable despite user interaction.

3. Our hiding method is evaluated with respect to two aspects:
secrecy and usability. Ideally, manipulated timestamps are
indistinguishable from ordinary timestamps. To validate the
steganographic strength of this hiding approach, we compare the
entropy of timestamps including embedded steganographic in-
formation with the entropy of timestamps produced by normal
file system operations and show their indistinguishability.

4. A discussion about digital forensic implications of the hiding
method described in this paper and the future work.

The rest of the paper is organized as follows: In Section Related
work we discuss related work. Section Analysis of ext4 timestamps
analyzes the inode structure and the granularity of the available
timestamps in the ext4 file system. We then present in Section
Methodology our methodology, how to hide and restore data in
ext4 volumes. After that, we explain our proof-of-concept imple-
mentation in Section Implementation. In Section Evaluation of the
hiding technique we evaluate the requirements (e.g., secrecy,
usability, indistinguishability) of the proposed hiding technique.
Lastly, we present the implications for digital forensic in-
vestigations in Section Implications on forensic investigations and
conclude our work in Section Conclusion and future work.

Related work

In this section we review related work with respect to anti-
forensics in general and data hiding in an ext file system in
particular.

Anti-forensics

Solving anti-forensic issues requires a consensus view with a
standardized definition and categories of different anti-forensic
methods in order to determine mitigation strategies (Harris,
2006). Well known definitions for the term anti-forensics were
proposed by Rogers (2005) and by Harris (2006). The most recent

definition was provided by Conlan et al. (2016), who summarized
previous definitions and defined the term anti-forensics as "any
attempts to alter, disrupt, negate, or in any way interfere with
scientifically valid forensic investigations.

Based on the original, widely accepted anti-forensic taxonomy
proposed by Rogers (2005), Conlan et al. (2016) designed a more
comprehensive and up-to-date taxonomy to divide anti-forensic
techniques into several categories. The extended taxonomy
includes five categories, each containing multiple sub-categories:
(i) data hiding, (ii) artifact wiping, (iii) trail obfuscation, (iv)
attacks against forensic tools and processes, (v) possible indications
of anti-digital forensic activity. The hiding method proposed in this
paper can be mapped to the category Data hiding of the extended
taxonomy. In particular, it fits the two sub-categories Filesystem
manipulation and Steganographic filesystem.

Data hiding in the ext file system

Hiding data in file system metadata was carried out by Anderson
et al. (1998) along with the development of a steganographic file
system. This resulted in StegFS (McDonald and Kuhn, 1999), a
steganographic file system based on ext2, which allowed people to
deny the existence of hidden data. Various data hiding techniques
for ext2 and ext3, as well as suitable countermeasures, have already
been discussed by Piper et al. (2005), Berghel et al. (2008), Eckstein
and Jahnke (2005) and Grugq (2005). The most recent contribution
in this field was a low-level study and comprehensive forensic
analysis of the ext4 data structures by Fairbanks (2012). He also
mentioned several potential hiding places in ext4, such as group
descriptor growth blocks and data structures in uninitialized block
groups, but did not study these places in-depth. Another relevant
paper is “Anti-Forensic Capacity and Detection Rating of Hidden
Data in the ext4 Filesystem”. Gobel and Baier (2018) present,
analyze, and evaluate different techniques to hide data in the ext4
file system, but did not focus on ext4 timestamps.

Besides that, there are the following helpful references for file
system analysis. Wong (2016) provides the ext4 wiki, an extensive
reference work for file system analysis. Mathur et al. (2007)
published an extensive work explaining the new ext4 file system
features, such as nanosecond timestamps. In addition, essential
information about ext4 can be found in the source code of the Linux
kernel, e.g., the Git repository provided by Ts'o (2017).

Steganography based on timestamps

The paper by Neuner et al. (2016) plays a major role for our
approach, since it proposed the applicability of file system time-
stamps as a steganographic channel for the first time. Based on the
central idea of this paper, that is hiding information within NTFS
timestamps, we examine whether ext4 offers similar means to
conceal data. In contrast to Neuner et al. (2016), we provide the full
source code of our PoC implementation. Furthermore, to complete
the related work, we calculate the entropy of regular and tampered
timestamps, make statements on the steganographic channel ca-
pacity (i.e., how much data can be hidden using the proposed tech-
nique and which volume size is required) and provide a more efficient
hiding algorithm, without having to sort the timestamps first.

Analysis of ext4 timestamps

In this section we analyze ext4 timestamps with the aim to
make use of these timestamps as a steganographic channel. We first
review the five available timestamps in the ext4 file system and
then analyze, which timestamps and which part of them are useful
for our approach. The result of this section is that the nanoseconds
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Fig. 1. Layout of the ext4 inode structure. Adapted figure, originally appeared in
Mathur et al. (2007).

part of the last access and the creation time are suitable for our
steganographic channel, respectively.

Timestamps in ext4

In order to select suitable timestamps for data hiding, we first
examine all available timestamps in ext4. The specific structure of
an inode table entry is mentioned in the documentation of the ext4
disk layout (Wong, 2016) and depicted in Fig. 1. The first 128 bytes
of an ext4 inode are identical to inodes from a former ext version
(i.e., ext2, ext3) followed by some extra fixed fields starting at byte
offset 128 of an inode data structure.

In what follows, we explain the timestamps provided by ext4 for
each file or directory, respectively. We make use of the term object
to denote a file or directory. Table 1 shows all ext4 timestamps with
their respective offset and length within an inode. For each object
the following timestamps are provided by ext4: (i) the last modi-
fication time of the object (mtime), (ii) the last access time of the
object (atime), (iii) the last metadata change time (ctime), e.g.,
change of ownership, permissions or file size and (iv) the deletion
time (dtime). These four timestamps are stored in 32-bit integers
each and represent the seconds since the Unix epoch (January 1,
1970). In ext4 an additional fifth timestamp was added: (v) the
creation time (crtime) of the object.

Besides that, the larger inode structure size of 256 bytes in ext4
offers additional space to support nanosecond timestamps (IMathur
et al., 2007). Four of five timestamps (except for the deletion
timestamp) were extended to 64 bits by adding the 32-bit field i_
[clm|alcr]time_extra respectively, as depicted in Fig. 1. The
lower two bits of these four extra 32-bit fields are used to extend
the 32-bit seconds field to a 34-bit second field and thus prevent
the time overflow in the year 2038 (new overflow date is now
2446-05-10 (Wong, 2016)). The upper 30 bits of the additional
timestamp fields are used to provide nanosecond granularity, since
30 bits are sufficient to support timestamps with a precision of one
nanosecond. Ext4 is able to fill the extra timestamp fields with
nanosecond-precise information since the Linux system clock also
provides nanosecond granularity>.

3 https://linux.die.net/man/2/clock_getres [Visited on 2018-01-12].

Table 1

Available timestamps in the ext4 inode structure.
Offset Length Name Description
0x8 32 bits i_atime Access time
0xC 32 bits i_ctime Inode change time
0x 10 32 bits i_mtime Modification time
0x 14 32 bits i_dtime Deletion time
0 x 84 32 bits i_ctime_extra Extra ctime bits
0 x 88 32 bits i_mtime_extra Extra mtime bits
0 x 8C 32 bits i_atime_extra Extra atime bits
0 x 90 32 bits i_crtime File creation time
0 x 94 32 bits i_crtime_extra Extra crtime bits

However, end users who access the file system via the ordinary
operating system interface can only see timestamps with second
granularity. As already mentioned by Neuner et al. (2016), there is
an information gap between how modern file systems store time-
stamps and how end users make use of them. Common Linux file
explorers, as well as the command Is -la, do not support nano-
second precision. Except for future or time critical applications, in
most cases the additional timestamp precision is not required. Thus
a manipulation of the nanoseconds part of an ext4 timestamp is of
no relevance for end users.

Analysis of nanosecond timestamps

The above-mentioned four extra timestamp fields are able to
conceal 16 bytes of data in each inode table entry. However, if we
use the lower two epoch bits to hide information, this leads to dates
beyond 2038, which looks suspicious and assists the forensic
investigator in disclosing hidden data and the steganographic
channel. Fig. 2 illustrates, how the lower two bits are used to extend
the original timestamps. To prove this behavior, an access time-
stamp is intentionally set to the year 2111. Linux commands like
debugfs -R 'stat <inode>' [image] or stat [file] are able to
parse manipulated timestamps.

Listing 1. Output of debugfs when parsing ext4 timestamps.

debugfs —R ’stat <12>’ testimage.dd

ctime: 0x58aed1d5:90fbce3c — Thu Feb 23 13:13:09 2017
atime: 0x0942d682:00000001 — Sat Jan 10 15:15:30 2111
mtime: 0x70e87e82:00000000 — Thu Jan 10 15:15:30 2030
crtime:0x58aed1b7:03d70980 — Thu Feb 23 13:12:39 2017

Listing 1 shows the output of debugfs, Listing 2 shows the
output of stat. Unlike debugfs, the stat command does not parse
crtime and dtime. To verify timestamp parsing, we add the lower
two bits of the i_atime_extra field with the value 01 to the
beginning of the i_atime field. This yields the hexadecimal value
0 x 010942D682 or the decimal number 4450342530, respec-
tively. The conversion to a human readable format is done with date
-d @4450342530. As a result we get Sat Jan 10 15:15:30 2111,
which corresponds to the output of debugfs. At this point it should
be mentioned that the istat command (provided by the Sleuth-
kit*) does not take the extra epoch bits into account and therefore
incorrectly decodes timestamps beyond the year 2038.

To finally get the nanoseconds part (e.g., of the change time-
stamp) we need to throw the low-order two bits away, since they
are not used for counting nanoseconds, and shift the value
0 x 90FBCE3C to the right by two bits—this is equivalent to
dividing by 4. As a result of this operation we get 0 x 243EF38F or
608105359, as shown in Listing 2.

4 Tested with TSK version 4.4.2.
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Fig. 2. Usage of the original ext4 timestamps in combination with the additional 32-bit fields.

Listing 2. Output of stat when parsing ext4 timestamps.

stat testfile.txt

Access: 2111-01—-10 15:15:30.000000000 +0100
Modify: 2030—01—10 15:15:30.000000000 40100
Change: 2017—02—23 13:13:09.608105359 40100

Timestamps as steganographic carriers

We next turn to the question, which ext4 timestamps are suit-
able to build a robust steganographic system. As we have seen, it
makes sense to conceal data only in the upper 30 bits of the extra
timestamp fields because the remaining 34 bits of the timestamps
are visible to the end user, i.e., inconsistencies could raise suspi-
cions during the forensic investigation. Depending on the number
of (mis)used timestamps, the available hiding capacity per inode
table entry ranges from 30 bits, if only one timestamp is used, to 15
bytes, if all four timestamps are used. Since modern file systems
typically contain up to millions of files, this gives us a total of a few
megabytes, which can be used to hide secret information.

Just as in other file systems, specific timestamps can be over-
written at any time in ext4 due to user interactions (e.g., modifi-
cation of the file content) or system interactions (e.g., change of file
permissions or file size), since timestamps are temporally limited
metadata that only describe the current status of a file or directory.
Thus, the volatility of timestamps depends on the usage scenario.
Some of the timestamps will change over time, while others remain
unchanged.

The creation timestamp is static and thus suitable for data hid-
ing, since it refers to the unique event when the file is created.

However, the change and modification timestamps are updated
each time the file metadata is changed or the file content is
modified. Such an update would destroy the hidden steganographic
information. Usually only static information is considered as a
carrier for steganographic systems, which is why the change and
modification timestamps are not considered here any longer.
Nevertheless, it is important to mention that they can be used
theoretically, at least as long as neither the file content nor the file
metadata changes (e.g., when using only static files, such as JPEG
files, without changing the metadata attributes).

The access timestamp is updated each time a file is accessed or
its directory is opened. However, in order to reduce file system
overhead and increase performance, we can disable the recurring
updates of access timestamps. This is done in many modern file
systems by default (e.g., Microsoft uses this feature since Vista), and
is often recommended for SSD storage devices and USB flash drives.
In Linux, the following ext4 mount options can be set in the /etc/

fstab file: (i) relatime, which is used on several Linux operating
systems by default, will only change the last access time if mt ime
or ctime of a file is newer than atime, or i f atime is older than
a defined interval (1 day by default). If the mount options (ii)
noatime and (iii) nodiratime are set, neither access to files nor
directories updates the access timestamps. This reduces recurring
disk access, since the inode tables do not have to be updated every
time a file or directory is accessed. The access timestamp thus re-
mains unchanged, in addition to the creation timestamp.

Since we want to hide information permanently, it is of interest
what happens to the timestamp values when the file is deleted.
While the fractional seconds in the i_ctime_extra and i_mti-
me_extra fields get a new value that corresponds to the time
(nanoseconds) when the file was deleted, the i_atime_extra and
i_crtime_extravalues are not affected by the delete operation.
So if we only use access and creation timestamps for the stegano-
graphic system, deleting a file does not directly lead to problems
when restoring hidden data. Nevertheless, the inode of the deleted
file gets unallocated in the inode bitmap and thus can be used at
any time to write new data—at least then the hidden content is
overwritten and the recovery process depends on an appropriate
error correction method.

Methodology

The anti-forensic technique proposed in this paper aims to
conceal data in ext4 timestamps that serve as steganographic
carriers. In this section we provide details about our methodology.
The detailed process and its implementation will be presented in
Section Implementation.

A user of such an anti-forensic technique is primarily interested
in the fact that the attacker cannot decide whether data is hidden in
the timestamps or not. In addition, the user would also like to be
able to use the anti-forensic technique with little technical
knowledge. Therefore, we develop a steganographic storage system
with high secrecy and easy usability.

Secrecy means the hardness of extracting the concealed artifacts
within the timestamps. We make use of a two layer secrecy
approach which bases on both steganography and cryptography.
First, steganography is able to obfuscate the existence of the in-
formation storage by concealing the data as non-obvious infor-
mation inside an honest-looking carrier (the timestamps) until the
data is re-accessed (Hassan and Hijazi, 2016). This depends on the
fact that the information hidden within timestamps can not be
distinguished from timestamps created with normal system usage.
We call this requirement indistinguishability. Second, cryptography
provides additional protection, if the steganographic layer is
discovered. We make use of an efficient symmetric stream cipher to
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encrypt all information stored within timestamps. The symmetric
key is derived from a password, which the user has to provide for
each encryption or decryption, respectively.

Usability addresses two aspects. First, a good runtime efficiency
of the information hiding and recovery process. Second, a reliable
robustness of the hidden data during and after user manipulation.
To be applicable in a wide range of scenarios, we assume a file
system that is fully accessible, i.e., the user can access files and
directories at any time, as well as create, rename or delete files and
directories.

System requirements

In this case, the file system metadata, in particular the nano-
seconds part of the timestamp, will be used as a carrier to conceal
data. For the sake of clarity, no data structure other than the
timestamps will be used to hide and restore data, i.e., the imple-
mentation does not use an additional file that keeps track of the
inodes in which the data is hidden because such a file would be
suspicious, even if it is encrypted.

To meet the requirements, we expect the system to automati-
cally determine suitable timestamps and verify that enough time-
stamps are available in the current file system. Our implementation
uses only allocated inodes to hide data because the parts of an
inode table of unallocated inodes contain only zeros. Data hidden in
unallocated inodes would raise suspicions during the investigation.

For additional security of the sensitive data, the steganographic
technique is used in conjunction with encryption. Therefore, the
secret message hidden in the proposed steganographic channel will
hardly be exposed during the forensic investigation in an ordinary
case.

Beyond that, the information will be stored in multiple steg-
anographic carriers and thus the message will be distributed
across the file system, making the forensic investigation even
harder. Access to the hidden data is only possible if the crypto-
graphic key for the encryption and the exact location within the
file system is known. Both depend on the password the user
enters.

Storage unit for data to be hidden

Fig. 3 depicts the additional 32-bit wide timestamp fields i_
[alcr]time_extra. This figure illustrates the data structure we
use to hide the secret information, that has the size of 2.30 bits
without using the lower two bits. Any such data structure consists
of the access and creation timestamp of one inode table entry. Since
we want to hide data that is much larger than the available capacity
of a nanosecond timestamp object (60 bits = 7.5 bytes), the input
message is split into multiple parts. These parts are called chunks in
the following. For each chunk to be hidden, we use one of the
structure shown in Fig. 3.

During the information hiding process, four bytes of data are
written to the respective offset of both the access and creation
timestamp. It is therefore necessary to ensure that only a maximum
of 6 instead of 8 bits are used in the fourth and eighth byte of a
chunk. This means we have to set the lower two bits to zero
(timestamps are read in little-endian), otherwise this would raise
the previously mentioned problem of dates beyond the year 2038
(cf. Section Analysis of ext4 timestamps).

Information processing
The correct sequence of writing and reading the individual

chunks in and out of the filesystem must also be considered. Thus
we need an ordered list of inodes that can be used as carriers.

access timestamp

[, Ofcounten [
I

e b S e T P

31
creation timestamp

!||||°°
31 2

Fig. 3. Overview of how data is stored in the nanoseconds part of both the ext4
timestamp field i_atime_extra and i_crtime_extra.

Neuner et al. (2016) ensure a logical order by extracting and sorting
all files by their creation time during the information hiding and
recovery process. This approach does not seem plausible regarding
the runtime efficiency, since extracting metadata first and sorting
all files and directories can be complex in a large file system with
lots of data. Instead, it makes sense to use file system data struc-
tures, which almost automatically provide the right order. In the
case of NTFS, the sequential processing of the MFT records appears
plausible. Similar to the MFT records, the consecutive inode
numbers in the inode tables can be used in ext4 to find the next
carrier when hiding and recovering data.

To detect the next valid timestamp during restore, there must be
a reference point (e.g., a bit pattern or a counter). Therefore, each
chunk is prepared with one byte that serves as a counter, as
depicted in Fig. 3. This means that all timestamps which are used
for data hiding are numbered. Since unallocated inodes are skipped,
the implementation can use the counter to determine which of the
following inodes has a valid value and thus contains hidden data.
Due to the index byte, 6.5 bytes per inode remain for the user data.
The smallest counter value 0 x 00 additionally contains the num-
ber of used inodes and the length of the entire message, including
the error correction code. This information is essential for recov-
ering hidden data. The use of only one index byte limits the data to
be hidden to a maximum size of 255 bytes. According to Neuner
et al. (2016), we reset the counter to 0 x 00 when an overflow
occurs, i.e., different counters in several inodes may share the same
value. In case of an overwritten start inode, the 256th subsequent
inode may alternatively be used to obtain relevant information,
such as the message length.

Since computers generally store data bytewise in memory, the
data must be processed in a way that the two low-order bits contain
zeros. Therefore, when reading the input, the data is first divided
into several 7-byte chunks, of which two chunks generally overlap
in 1 byte. This means the program reads 14 bytes of data of which
2.7bytes overlap in 1 byte, i.e., the last byte of chunk1 matches the
first byte of chunk2 and so on. This step is relevant for subsequent
operations, since we can discard 4 bits of data in each chunk using
shift operations and logical bitwise operators without losing any
relevant data. The processing that is done every time data in the
size of two chunks is read is shown in Fig. 4 and Fig. 5. After pre-
processing, the data matches the structure shown in Fig. 3. There-
fore, we have to insert four zero bits (2.2bits) in each 7 byte chunk
as low-order bits to get a valid date. Lastly, the resulting data
structure (chunk) includes the zero bits and the index byte and has
a total size of 8 bytes.

Encryption

Before embedding the information into the timestamps, the
additional encryption is performed. This approach is a kind of
fall-back security if the steganographic channel in the timestamps is
disclosed. Using a counter results in patterns distributed across the
inode table, which may reveal the existence of hidden information.
The encryption provides randomly occurring timestamps, which
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Fig. 4. First step in preprocessing a chunk.

neither allow the recognition of patterns, nor disclose hidden in-
formation without access to the cryptographic key. Encryption in
form of a stream cipher is best suited for our needs. Unlike a block
cipher, a stream cipher can be used without having a fixed size for
the input block, i.e., the stream cipher is capable of any number of
plaintext characters. Furthermore, using a stream cipher guarantees
that the length of the input and output message is consistent, since
each character of the plaintext is linked bitwise with the respective
character of the key stream. Besides, the stream cipher is less
vulnerable to a missing timestamp (30 bits) than the block cipher
where a block of multiple bytes would not be recovered.

During information hiding and recovery a SHA-256 hash value is
calculated that depends on the password the user entered. The
generated hash value is responsible for the first inode number in
which data is hidden. This allows the program to start hiding data
from a random inode number, i.e., the data thus is hidden within
different inodes depending on the password. If not enough inodes
are allocated in the file system, the program starts in inode 12, since
this is the traditional first usable inode number.

Error correction code

In general, when using file system internal data structures to
conceal data, the file system can interfere with the hidden content.

shift left by 4 bits ‘o
= —

chunk?2

.
shift right by 2 bits .
—

part2
(4 bytes)

2 bits

partl
(3 bytes)

| | [
2 bits

1 byte counter

Fig. 5. Second step in preprocessing a chunk.

In a fully accessible file system, it is normal that file content and
metadata is modified. By removing old files and creating new files,
hidden information can be deleted at any time. In order to recover
the information of modified or deleted timestamps, we use an error
correction code (ECC) as integrity check to provide some redun-
dancy of the hidden content. Since ECC is not in the focus of this
research, an open-source Python library of the Reed Solomon
algorithm is used. Since the amount of available memory within the
timestamps is already limited, the ECC should not cause a signifi-
cant overhead. In this case, the ECC adds 40 bytes of redundancy to
each 215 byte of the incoming message, i.e., a redundancy of about
15 percent. This ensures that the redundant information is
distributed over the entire message and thus over several time-
stamps, instead of storing the complete redundancy within few
contiguous inode table entries.

Implementation

In this section we present in detail the process to hide and
recover data in ext4 timestamps.

Relevant information for the data hiding process

The hiding and recovery process relies on various information
from the superblock and group descriptor table.

First, to calculate the block number of the inode tables and inode
bitmaps of the individual block groups, the total block count, the
number of blocks per group, and the size of a group descriptor in
bytes are read from the superblock. To get the total number of block
groups in the file system, we need to divide the number of blocks by
the number of blocks per block group.

s_blocks_count_lo
s_blocks_per_group

nr_of _block_groups = (1)
We then iterate over the block group descriptor table with
nr_of_block_groups iterations. For each block group we store
the offset of the inode table and the offset of the inode bitmap.
Second, to later hide the data in the right place, we need to
calculate the block number of the access and creation timestamps
for each inode, respectively. The calculation is done as follows:

1. Calculate the block group of the respective inode:

(inode_nr — 1)
s_inodes_per_group

block_group = (2)

2. Calculate the index of the used inode within the block group:

index = (inode_nr — 1)mods_inodes_per_group 3)

3. The program uses the previously stored list including the offsets
of the inode tables to get the right offset of the inode table of the
current block group that is stored in offset_inodetable.

4, The exact block number of the inode within the inode table is
determined using the calculated index and the size of an inode:

offset_inode = index-s_inode_size (4)
5. Using the aforementioned values, the block size in the file sys-

tem and the fixed offset of the access and creation timestamps
within the inode structure (cf. Table 1), finally the exact offsets
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of the two timestamps can be calculated individually for each
inode:

offset_access = offset_inodetable-s_log_block_size + offset_inode

+ 140
(5)
offset_creation = offset_inodetable-s_log_block_size
+ offset_inode + 148 (6)

Third, to check the allocation status of an inode, the program uses
the inode bitmap of the corresponding block group. Therefore, the
block group of the respective inode is calculated. The respective inode
bitmap offset of the current block group is taken from the previously
created list and stored in offset_inodebitmap. The byte- and
bit-offset within the inode bitmap is determined as follows:

byte_offset = ((inode_nr
— (offset_inodebitmap-s_inodes_per_group)) — 1)

(7)

bit_offset = ((inode_nr
— (offset_inodebitmap-+s_inodes_per_group)) — 1)
(8)

In addition, a loop with the total inode count of iterations de-
termines whether sufficient inodes in the inode bitmaps are allo-
cated. If there are not enough allocated inodes available, the
program informs the user and stops.

Information hiding

The hiding process in our PoC implementation works as follows.
First, the user starts the Python program and provides (i) a file to be
hidden and (ii) a key to encrypt the data. The program then per-
forms the following steps:

1. ECCs are calculated and concatenated with the message or
data provided: E = ECC(M).

2. The software determines the corresponding device file of the
current path where the program gets started.

3. It reads necessary data from the superblock and the block
group descriptor table, and thus calculates block numbers of
inode tables, inode bitmaps and offsets of the access and
creation timestamps.

4. It calculates the first inode that is used to hide data
depending on the entered password (derived from the hash
value of a cryptographic hash function) and determines the
total number of allocated blocks. Therefore, the program
verifies the allocation status of each available inode.

5. The number n of required inodes depends on the total length
of the message including the error correction codes:
size = len(E). The data is then split in n chunks of 7 bytes each
(B1, B3, ..., By), of which two successive chunks overlap one
byte.

6. Each chunk gets a one byte large counter prefix that works as
a block index (ie{1,2,...,n}). The counter starts again at
0 x 01 after reaching the value OXFF. Starting with the chunk
number 0 x 00, an additional chunk is inserted repeatedly
every 256 chunks. This extra chunk contains the total size
and the number of used inodes n. This results in chunks with
a size of 8 bytes: (0x00, n, size), (0x01,By), ..., (n,By).

7. All chunks are encrypted with a symmetric stream cipher
using the previously entered password i.e., C; = enc(0x01, By),
Cy = enc(0x02,By), ... This results in encrypted chunks with a
size of 8 bytes (Cy, Cq, ..., Cy).

8. Each encrypted chunk is processed so that the lower two bits
of the access and creation timestamp only contain zeros.
After shift operations each chunk contains 6,5 bytes user
data, 1 index byte and 4 zero bits i.e., each timestamp con-
ceals 30 bits of the payload.

9. If necessary, the last chunk is padded with null bytes.

10. If enough inodes are allocated, the first part of a chunk is
written into the access and the second part is written into
the creation timestamp. Therefore, the offsets of both the
access and creation timestamps are determined. Since we
aim for a robust steganographic system, only allocated
inodes, that are not set to zero, are used in the hiding
process.

Recovery of hidden information

When restoring the hidden information, the user simply enters
the password that was used to encrypt the data. The program then
performs the following steps:

1. The program determines the device file associated with the
path where the program gets started. This has to be the path
where data is hidden.

2. It reads necessary data from the superblock and the block
group descriptor table and thereby calculates all relevant,
previously mentioned values.

3. Depending on the hash value of the entered password,
the first inode containing hidden information is
determined.

4. If the first inode starts with the value 0 x 00, this provides
the number of used inodes n and the total size of the hidden
message including ECC.

5. According to the value n, the program is able to read the right
access and creation timestamps. It only processes time-
stamps that correspond to the next larger index value in this
order: 0 x 01, 0 x 02,..., n.

6. Previous shift operations are reversed. The original data is
written back into the gaps of the chunks that have been
created to prevent dates beyond 2038.

. The padding in the last chunk is removed.

8. All chunks are decrypted with the symmetric stream cipher

using the previously entered password, e.g., (1, By) = dec(Cy).

9. All leading counter bytes as wells as chunks that contain the

total size of the message are removed. In addition, the
overlaps of two chunks are removed.

10. The original file is restored by calling the ECC function:

M = ECC(E).

~N

File system check to repair invalid inode checksums

In ext4, all major data structures use metadata checksums. This
also applies to the inode table, since each inode has its own
checksum (Wong, 2016). Overwriting the nanosecond timestamps
causes the original inode checksums to no longer match the con-
tents of the inode structures. Therefore, we need to repair the inode
checksums (matching the new content), otherwise this would raise
suspicions during the forensic investigation. In ext4, the file system
check tool e2fsck can be used to repair inconsistencies, such as
wrong metadata checksums.
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However, the used e2 fsck version’ contains a function which
assumes garbage in the case of multiple incorrect inode checksums
(Wong, 2017). For this reason, the tool asks the user if the corre-
sponding inode entries should be removed. This would also remove
the hidden content. The error message prevents the file system
from being automatically repaired. Therefore, the source code of
e2fsck was modified and recompiled®. The command e2fsck -p -f
[image] then repairs all inconsistent inode checksums without
additional user interaction. Another forced file system check does
not give any further warnings. The volume can be mounted without
problems.

As future work, we consider to integrate the CRC32C algorithm,
that is used to calculate checksums within kernel code, directly into
our PoC implementation.

Evaluation of the proposed hiding technique

The previous concept of our developed PoC implementation is
now evaluated in terms of the following relevant aspects: indis-
tinguishability, correctness, robustness and available capacity.

Indistinguishability

In this section, we evaluate if data hidden in the nanoseconds
parts of ext4 is distinguishable from that of normal system usage. In
case of the steganographic timestamps we expect a uniform
probability distribution of the timestamps, since we use a stream
chipher to encrypt the data before embedding it into the time-
stamps, which provides ones and zeros with equal probability.

It is of interest now, how ext4 handles the sub-second precision
and whether normal timestamps differ from timestamps with
hidden content. Therefore, we calculate the information entropy for
both a variety of original and modified nanosecond timestamps.
High information entropy corresponds to maximum uncertainty.
This is what we assume, at least in timestamps including encrypted
content.

Entropy is defined as:

Hx) == "7 p(x;)logop(x)) (9)

where p(x;) is the relative frequency of the output x; with the
additional definition of p(x;)log,p(x;) := 0 in case of p(x;) = 0.

First, we analyze the distribution of the nanoseconds part of the
timestamps produced by normal system operations. In order to
determine representative values for the timestamp distribution, we
need to create as much files to get reasonable expected values (we
set the expected value to 100 in case of the uniform distribution).

As we expect a deviation in the least significant part of the
timestamps, we only consider the lower 10 bits of the nanosecond
timestamps in our evaluation instead of the full spectrum of 30 bits.
These bits include values in the range of 0—1023, i.e., values be-
tween 0 ns and slightly more than 1 us could have passed within
the current second since the Unix epoch. If we get a distribution in
these bits that is nearly uniform, we can conclude that the full
spectrum of timestamps with sub-second granularity also has a
uniform distribution, since the lower 10 bits have the highest ac-
curacy in the time specification.

To collect enough timestamps, we created (i) 100,000, (ii)
250,000 and (iii) 500,000 files in multiple iterations (fifty times in
total) on a Linux system with an ext4 test volume using a Python

5 Tested with e2fsck version 1.43.4.
6 Comment out the method EXT2_SF_WARN_GARBAGE_INODES in the
passl.c file.

script. Theoretically, we want to provide all possible values in the
given range of the lower 10 bits, so we use a random delay of 1 ns to
1 us between each creation of a file. This helps us to obtain realistic
test values, in contrast to a file creation without delay, in which files
are created as fast as the computer can handle it and several equal
timestamps could appear.

We now collect the lower 10 bits of both the 30-bit wide access
and creation timestamps of our created files. These two timestamps
are equal to each other when the files are created, while they are
different after data is hidden. We then build the absolute frequency,
i.e., the number of times each nanosecond value occurs in all
created files. We then normalize the absolute frequency by the total
number of collected timestamps to get the relative frequency. With
the previously calculated probability of each value, we now calcu-
late the entropy. Since our experiments are with respect to the
lower 10 bits, 10 is the maximum of entropy (in case the time-
stamps are uniformly distributed). Thus, slightly less than 10 bits is
a more realistic value. To compare the entropy of original time-
stamps to the modified ones, we conceal our test file within the
timestamps. After that, we calculate the entropy again.

We repeat the process of (i) creating files with random delay, (ii)
calculating the entropy, (iii) hiding data within timestamps and (iv)
calculating the entropy again multiple times to get meaningful
values. In our experiments we hide a bitmap file with a size of
357,574 bytes (including ECC) which needs at least 55,228 allocated
inodes.

The result is summarized in Table 2 in terms of minimum,
maximum, standard deviation and the arithmetic mean results of
the calculated entropy values for both original timestamps and
tampered timestamps. We highlight two aspects: First, the time-
stamp distribution of the nanoseconds part itself (i.e., without
hidden information) does not significantly deviate from a uniform
distribution. Second, the entropy of timestamps with hidden in-
formation indicate that these timestamps are indistinguishable
from that of normal file system operation since we use a stream
cipher before embedding the content.

Correctness

To verify the integrity of the recovered data, SHA-256 is used as
a hash function. That is, we calculate the hash value of the input file
before hiding it, and calculate it again after restoring the data. If
both values match, we are sure the same data is restored as
previously hidden.

Further tests are performed with the above-mentioned Linux
commands stat and debugfs, to verify that the dates (especially the
year) have no unintended high values (cf. Section Analysis of ext4
timestamps). Verifying the correctness of the nanosecond time-
stamps can also be done manually by using a hex-viewer. The bi-
nary representation of 4-byte extra timestamp values containing
the embedded information shows that the two low-order bits
generally contain zeros. The conversion of timestamps can be done
using date command, as shown in Section Analysis of ext4
timestamps. The hex-viewer also demonstrates that plain text
patterns, in particular an ascending counter value, are no longer
visible due to the encryption.

In addition, e2fsck verifies that the file system in which the
data is hidden is in a consistent state. Since we repaired the inode
checksums of all tampered inodes, the file system check does not
give any further warnings.

Robustness

If the volume is mounted with the noatime option (which
implies nodiratime), the embedded information can only be
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Table 2
Minimum, maximum, standard deviation and arithmetic mean of the calculated entropy results.
100,000 250,000 500,000
w/o data w/data w/o data w/data w/o data w/data
MIN 9.771057856 9.808216785 9.795085524 9.964931144 9.975373588 9.986241694
MAX 9.986066967 9.94436697 9.994354388 9.987314605 9.995437745 9.993833209
SD 0.03894002 0.027292105 0.054713306 0.005360409 0.002860247 0.001523064
AVG 9.943489772 9.90690734 9.967231224 9.979583372 9.992873314 9.99153063

overwritten manually because the timestamps are no longer
updated. Overwriting the access timestamps is done by mounting
the image without the necessary mount option. Since we accessed
multiple carrier files via cat the access timestamps were updated. In
addition, several files were removed manually using the rm com-
mand. New files were created by the touch command. stat shows
that access and creation timestamps were changed.

The maximum number of overwritten timestamps depends on
the number of additional redundancy bytes. If a high amount of
overwritten information is expected (e.g., on a multi-user system),
the redundancy level can be increased. However, if the case of
overwritten timestamps cannot occur, the error correction method
can be skipped completely which results in an increased amount of
concealable data. In the PoC implementation redundant informa-
tion is intentionally distributed over the entire file system.
Depending on ECC and file system usage, redundancy could also be
stored in a fixed location (e.g., inodes of invariable/non-erasable
files) so that it can not be lost.

Available capacity

The amount of usable space depends on the total size of the file
system and the number of allocated inodes. To analyze the number
of available inodes, we created ext4 test volumes with the size of
1 GB, 10 GB, 50 GB, and 100 GB, respectively using mk fs . ext4 with
default settings. Table 3 shows the number of available inodes in
the images.

Table 4 shows that the proposed hiding technique quickly rea-
ches its limits, this applies especially to large files. The previously
hidden bitmap file required 55,228 inodes, which already con-
sumes 90 percent of the maximum available inodes in the 1 GB
image. A file with 1 MB already requires 183,190 inodes, i.e., a 3 GB
image filled with data would be needed. For larger files, the amount
of required inodes quickly exceeds one million. Therefore, this anti-
forensic technique is not designed to hide large files, such as image
or video files. Instead, small text files can be hidden, e.g., multiple
files stored in a zip file which include passwords, personal data or
other confidential data can be hidden at one time.

Implications on forensic investigations

Since we use encryption, entropy is not usable as a countermea-
sure. But if one decides to disable the cryptographic layer, a statistical
analysis can be used for pattern recognition. Our implementation is a
prototype. When developing a productive solution, there should be

Table 3
Number of available inodes within several test images.

Volume size Total number of available inodes

1GB 61,057
10 GB 610,801
50 GB 3,055,617

100 GB 6,111,233

no installation files, execution traces or other artifacts which prove
that an anti-forensic tool has been used, i.e., starting the Python
program might appear in the history file if one does not consider to
circumvent this. The language interpreter can also leave appropriate
hints (e.g., log files). It is advantageous to check whether the chro-
nological sequence of timestamps makes sense, i.e., forensic in-
vestigators should keep an eye on invalid states of timestamps, e.g.,
access or modification timestamps which take place before the cre-
ation time of a file, as well as change and modification timestamps
which take place just a few nanoseconds after the creation time. In
our implementation we got rid of such inconsistencies by appro-
priate adjustments of timestamp values which have a lower preci-
sion than nanoseconds. Furthermore, a proper anti-forensic tool
should not store data anywhere else than in the memory (i.e., no
swapping on the hard disk). If backups of the volume exist, different
timestamps can be used as indication of hidden information. In
addition, further file system internal data structures could be
examined for their usefulness in this context (e.g., the journal). If
operating system files were used as carriers, a timeline of the
respective timestamps can be used to compare the chronological
sequence of the timestamps of the installation files with the
tampered creation timestamps in order to prove inconsistencies.

Conclusion and future work

In this paper, we analyzed the feasibility of using timestamps of
the ext4 file system that serve as steganographic carriers to conceal
data. We developed an anti-forensic technique that offers secrecy of
the hidden data and easy usability, even for users with little tech-
nical knowledge. We presented in detail the process of information
hiding and recovery in the case of ext4. The evaluation shows that
our PoC implementation satisfies our requirements and actually
works in practice. Thus, hiding information within ext4 timestamps
with sub-second granularity is feasible, also in a file system that is
fully accessible. We evaluated our methodology in terms of calcu-
lating the entropy for both regular and tampered timestamps,
verifying the correctness and robustness of the anti-forensic tech-
nique with appropriate Linux commands, such as the file system
check, and presenting the maximum available capacity to conceal
data. Due to the use of a two layer secrecy approach which bases on
both steganography and cryptography, the embedded content is
statistically indistinguishable from regular timestamps.

As future work, we consider the combination of this method
with other ext4 anti-forensic techniques to achieve a higher

Table 4
Required allocated inodes depending on the input.

Size of the input Required allocated inodes

1 KB 186

100 KB 18,325
500 KB 91,595

1 MB 183,190
5 MB 915,923
10 MB 1,831,846
50 MB 9,159,219
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capacity to hide larger data. Therefore, different hiding methods
can be used at the same time, as described by Gobel and Baier
(2018). Besides, we consider to integrate the calculation of the
metadata checksums directly into the PoC implementation and
thus avoid the separate calculation using e2 fsck. Furthermore, the
evaluation of the number of timestamps, which can be overwritten
without disturbing the steganographic system, could be completed.
In addition, a transfer of this hiding approach to other file systems
with nanosecond granularity is conceivable, e.g., to the upcoming
major Linux file system btrfs.
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