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Abstract. The Internet is increasingly used to disseminate unethical
and illegal content. A grave concern is child sexual abuse material that
is often disseminated via end-to-end-encrypted channels. Such encryp-
tion defeats network- and server-based scanning measures used by law
enforcement. A trade-off is to enable confidential communications chan-
nels for users and scanning opportunities for law enforcement by employ-
ing perceptual-hashing-based targeted content scanning on user devices.
This has generated intense discussions between policymakers, privacy
advocates and child protection organizations.
This chapter summarizes the current state of research in perceptual-
hashing-based targeted content scanning with a focus on classical met-
rics such as false positives, false negatives and privacy aspects. Insights
are provided into the most relevant perceptual hashing methods and an
attack taxonomy for perceptual-hashing-based targeted content scanning
is presented. The complexity in generating false negatives is evaluated
and the feasibility of evading perceptual-hashing-based targeted content
scanning is demonstrated.
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1 Introduction

Digital communications channels such as messenger services, discussion boards
and social networks are increasingly used for nefarious activities, a trend that
appears to have increased during the COVID-19 pandemic [28]. The commu-
nications channels are low-cost, highly-scalable and private, and perpetrators
leverage them to disseminate illegal, abusive and violent content. The content is
often in the form of images and videos that contain hate speech, disinformation,
terrorist propaganda and more.

A grave concern is the dissemination of child sexual abuse material (CSAM).
According to the German Federal Criminal Police Office [9], the overall numbers
of crimes related to child sexual abuse were nearly seven times higher in 2021
compared with 2016. In 2021, the U.S. National Center for Missing and Exploited
Children (NCMEC) [20] collected nearly 30 million reports of CSAM from large
technology companies such as Meta and Google.
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Several companies have cracked down on the dissemination of illegal content
via their online services. While the technical details of their countermeasures are
not released, it is clear that image recognition technologies are employed to scan
content. Major companies that conduct scanning include Meta [8], Microsoft [19],
Apple [2] and Google [26].

Perpetrators are increasingly disseminating illegal content such as CSAM
via end-to-end-encrypted channels. Such encryption defeats network- and server-
based scanning measures used by law enforcement. A trade-off is to enable con-
fidential communications channels for users and scanning opportunities for law
enforcement by employing perceptual-hashing-based targeted content scanning
on user devices.

This chapter summarizes the current state of research in perceptual-hashing-
based targeted content scanning with a focus on classical metrics such as false
positives, false negatives and privacy aspects. Insights are provided into the most
relevant perceptual hashing methods and an attack taxonomy for perceptual-
hashing-based targeted content scanning is presented. The complexity in gen-
erating false negatives is evaluated and the feasibility of evading perceptual-
hashing-based targeted content scanning is demonstrated.

2 Related Work

NIST Special Publication 800-168 [7] defines approximate matching as “a generic
term describing any technique designed to identify similarities between two dig-
ital artifacts.” The publication also categorizes a perceptual hash as a semantic
hash used primarily for bytewise approximate matching.

Academic research on perceptual hashing is relatively sparse. However, sev-
eral open-source perceptual hashes have been developed, including bHash [29],
aHash [14], dHash [15], pHash [13, 30], wHash [21] and PDQ [17, 18]. Of these
perceptual hashes, only pHash and PDQ come with detailed descriptions. In
2010, Zauner [30] provided an extensive description and evaluation of pHash;
despite its age, pHash is still relevant today. Meta, which developed PDQ, has
released a technical paper [18] covering the inner workings of the hash and a
limited evaluation [17].

Closed-source perceptual hashes have also been developed, the most com-
monly used being PhotoDNA [19] and NeuralHash [2]. While no official docu-
ment related to PhotoDNA is available, Apple, the NeuralHash developer, has
released limited technical information about the perceptual hash [2, 3].

Kulshrestha and Mayer [16] are the only academic researchers to propose a
perceptual-hashing-based targeted content scanning system that is designed in a
privacy-preserving manner. Their proposal seeks to enforce privacy using cryp-
tographic methods, specifically, private exact membership computation (PEMC)
and private approximate membership computation (PAMC). They do not judge
whether or not it is ethical to use such a system nor do they take positions on
what targeted content should be scanned and the effectiveness of scanning.
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Several academic researchers have focused on attacking perceptual hashes.
Struppek et al. [25] presented four attacks on NeuralHash that enable detection
evasion, hash collision and information extraction. Evaluations of the attacks
using a dataset of 10,000 images demonstrate that they are functional and re-
alistic. Importantly, Struppek and colleagues are the only researchers to release
the actual code used to evaluate attacks. Jain et al. [11] presented detection
evasion attacks on the pHash, aHash, dHash and PDQ perceptual hashes. Their
detailed evaluation employed images from the same dataset used by Struppek
et al. [25], but their sample size was much larger.

3 Perceptual Hashing

This section explains the general concept of perceptual hashing and presents
details about two prominent hash functions.

3.1 Perceptual Hashing Details

Perceptual hashing is an approximate matching technique for comparing the
similarity of objects. In this work, the focus is on the perceptual similarity of
pictures (images). Perceptual similarity means that a human presented with two
images would judge them as being the same or similar. Because images are often
modified slightly during their use (e.g., compressed to reduce bandwidth and
storage before being uploaded to a digital service), they cannot be identified
by cryptographic hashes or other exact matching techniques. In such scenar-
ios, perceptual hashing can be used effectively for approximate matching [16].
Perceptual hashing operates at the semantic level of images, interpreting the in-
ternal data structures of image files and using perceptive features of the images
for matching [7].

As an approximate matching technique, perceptual hashing has two basic
components. One is a similarity digest based on object features and the other is
a similarity function that compares similarity digests and computes a similarity
score [7].

A feature is the most basic component of an object that is compared and
comparing two features yields a binary result [7]. In the case of perceptual hashes,
the features should map to data representing the human perceptions of images.

Following the notation of Struppek et al. [25], a perceptual hash function H
is given by:

H : Rh×w×c → {0, 1}k

where the three-dimensional array input to function H contains image height
h, width w and color channel c data, and the output of function H is a k-bit
binary hash. Note that k is a fixed value chosen for a concrete perceptual hash
to ensure that hashes produced by the hash function are of equal length. A hash
computation involves two parts. First, image features are extracted and stored in
an intermediary format (e.g., matrix or vector). Next, the intermediary format
is mapped to a k-bit hash.
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Fig. 1. Overview of PDQ and NeuralHash.

A similarity function D(h1, h2) is used to compare two perceptual hashes h1
and h2. It produces a similarity score between 0 and 100. The higher the score
of images with hashes h1 and h2, the more perceptually similar the images.
Hamming distance is often used as the basic comparison function. Two images
are determined to be perceptually the same, if their similarity score exceeds a
preset threshold [30].

3.2 Perceptual Hash Functions

This section describes two prominent perceptual hash functions, PDQ from Meta
and NeuralHash from Apple. Figure 1 provides an overview of the main steps in
the two functions. Note that the NeuralHash image in Figure 1 is taken from [25].

Although certain differences exist between the two perceptual hash functions,
it is possible to generalize the process. Specifically, the input image data is nor-
malized for further processing and the image details are reduced by rescaling
and removing color. Next, features representing the perceptions of images are
extracted. The features are mapped to a binary hash. While image normalization
and the final reduction step have big influences on perceptual hash quality, the
main distinction between the two implementations is the feature extraction pro-
cess. PDQ relies on digital image processing using the discrete cosine transform
whereas NeuralHash uses a neural network.

PDQ PDQ was designed to detect abusive imagery in large-scale contexts in so-
cial networks by comparing digital perceptual hashes [17]. While PDQ is claimed
to be built from the ground up, it is very similar to the discrete-cosine-transform-
based pHash [13].
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Figure 1 (top) shows the steps involved in generating a PDQ hash of an
image [18]. First, the image is transformed to its luminance representation. To
further reduce the image details and render the hash computations less resource
intensive, the image is resized to a 64×64 pixel square. The interpolation method
employed ensures that each pixel contributes to a down-sampled pixel.

Next, the most perceptually relevant portions of the 64 × 64 image are ex-
tracted. This is accomplished by using the discrete cosine transform to convert
the image to a frequency representation and portions of the image that do not
contribute much to human perception are discarded. The 64× 64 matrix output
of the discrete cosine transform is thus reduced to a 16× 16 submatrix.

Finally, to generate the hash, the median value of the 16 × 16 submatrix is
computed. Each value in the submatrix is compared against the median to create
the 256-bit PDQ hash. Specifically, when a submatrix value is larger than the
median, a one is placed in the hash; otherwise, a zero is placed in the hash.

NeuralHash NeuralHash is intended to be a part of a CSAM protection sys-
tem deployed in Apple’s ecosystem of clients and cloud services. Apple released
limited information about NeuralHash in a technology description [2] and threat
model review [3] before its planned release with iOS 15 in late 2021. Additional
details about NeuralHash are described in [25] based on community efforts to
extract and reverse engineer its algorithm.

Figure 1 (bottom) shows the steps involved in generating a NeuralHash of
an image. First, the input image is preprocessed. This involves transforming the
image to the RGB color model, resizing it to a 360× 360 pixel square and nor-
malizing the RGB pixel values to [−1, 1] [25]. Next, a neural network is used to
extract image features in the form of an array with floating point values. The
values serve as descriptors or features of the image [2]. The neural network was
previously trained in a self-supervised manner using an unknown dataset to gen-
erate close descriptors for images that are perceptually similar. The perceptual
similarity is based on angular distance and cosine similarity.

Following this, the array of descriptors is compressed into a much smaller 96-
bit hash that preserves similarity using a locality-sensitive hash [2]. Note that
NeuralHash was not trained to detect CSAM per se, but rather to compare im-
ages that are perceptual similar. Therefore, despite the fact that it uses a neural
network for feature extraction, NeuralHash is characterized as a perceptual hash
function.

4 Targeted Content Scanning

A perceptual-hashing-based targeted content scanning (PHTCS) system com-
prises three core components, a perceptual hash function, the targeted content
database and processes and policies that determine which images are targeted
during scanning and how the recognized targeted content is moderated.

The main goal of PHTCS is to find and moderate occurrences of targeted
content in a digital service or communications channel. Perceptual hashes are
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used to scan a flow of images and recognize the images with targeted content [1,
16].

A targeted content database comprising a reference list of perceptual hashes
is employed. The database can be viewed as a blacklist. Content subject to
PHTCS is examined using perceptual hashing. This enables blacklisted images
as well as images that are perceptually similar to be identified. A clear limitation
of the blacklisting employed by PHTCS is that only known targeted content can
be recognized [1].

Finally, processes and policies must be defined. A PHTCS system is enrolled
in a digital service, which feeds it images that it scans to recognize targeted con-
tent. Therefore, PHTCS is typically specified for a single service or single service
provider that enrolls it in its services. While software is required to implement
the image flow, more interesting are the processes and policies that specify how
scanning is conducted and how images that match the targeted content are mod-
erated [16].

In general, there needs to be a process that regulates the triggers that cause
images to be scanned. For example, scanning could be triggered by a user up-
loading an image to a social network. Before the image is processed further and
displayed in the social network, it would be input to the PHTCS system. This
leads to a second process that regulates the actions of the social network if an
uploaded image is deemed to have targeted content.

Some of the PHTCS actors have already been mentioned. One actor is the
service provider that has enrolled PHTCS in one or more of its services. Another
actor is a user of the digital service that has enrolled PHTCS. Aside from trig-
gering scanning due to the presence of targeted content, the user has no active
role in PHTCS [1, 16]. Another actor that may not be immediately obvious is a
trusted party, which is responsible for creating and curating the targeted content
database. In the case of CSAM scanning, child safety organizations, such as the
NCMEC in the United States, would curate databases of perceptual hashes and
share them with partners. This actor is called a trusted party because the service
provider has to trust the actor to include only hashes of targeted content in the
database. Of course, this would not be verifiable by the service provider or users
because a perceptual hash is a one-way function and the actual targeted content
would not be shared [16]. The last PHTCS actor is law enforcement that comes
into play when illegal content is detected. The content may be reported by the
service provider to the responsible law enforcement agency on a voluntary or
mandatory basis [1].

5 Attacking PHTCS

PHTCS relies on perceptual hashes to recognize images that are defined as tar-
geted content. Users intending to circumvent or abuse a PHTCS system would
be interested in launching attacks on PHTCS. Some PHTCS systems may im-
plement protection mechanisms against attacks. For example, human review of
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each matched image can prevent misinterpretations of benign images as targeted
content. However, this additional step is expensive and is difficult to scale.

As a result, companies would design their PHTCS systems to have very low
(natural) false positive rates (see, e.g., [6]). Errors or adversarial methods that
prevent PHTCS from detecting harmful images as targeted content cannot be
prevented by human review. Users that manipulate their harmful images to evade
detection could significantly reduce PHTCS effectiveness.

Perceptual hashes are more likely to be attacked successfully if they are used
in client-side PHTCS. This is because the attacker could gain direct access to
key PHTCS components, namely, the targeted content database and the device
that performs the scanning. In server-side scanning, attacker access would be
much more limited and the perceptual hashes would often be kept secret (e.g.,
with PhotoDNA [1]).

Based on research described in [22, 25], a taxonomy of attacks on perceptual
hashes in the context of targeted content scanning is created. The taxonomy
differentiates attacks into three categories, detection evasion, hash collision and
data leakage. The following sections describe the attacks and how attackers can
use them to combat PHTCS. Additionally, practical examples of attacks on
perceptual hashes and their ability to hinder PHTCS are described.

5.1 Detection Evasion

A detection evasion attack seeks to prevent an image containing targeted content
from being matched by a PHTCS system. This is accomplished by transforming
an image X (hash H(X)) with targeted content to a new image X ′ (hash H(X ′)
that is perceptually similar to X but H(X ′) 6= H(X). If the PHTCS system
to be bypassed employs a threshold T for matching hashes, then the similarity
D(H(X), H(X ′)) > T must hold [10, 11]. For the attack to be effective, changes
to the image should have minimal impacts on its perception, but its perceptual
hash value would be altered significantly [11]. To carry out the attack, an attacker
must have access to the image X that must evade detection and should be able
to compute the perceptual hashes H(X) and H(X ′) [11].

Detection evasion attacks would enable users to store, view and disseminate
images with targeted content on services and devices with enrolled PHTCS sys-
tems. A successful attack would impact PHTCS effectiveness significantly. The
impact on effectiveness is evaluated using three metrics:

– Success Rate: This metric assesses how reliably an attack works on images.
– Perceptual Similarity: This metric assesses the similarity of an evading

image compared with an image with targeted content.
– Modification Effort: This metric considers the effort, in terms of time,

involved in modifying an image with targeted content. Simple image modi-
fications such as rotating or resizing can be used, as well as more complex
modifications such as editing pixels in special positions based on the percep-
tual hashes [25].
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Fig. 2. Detection evasion attacks on NeuralHash (from [25]).

NeuralHash Attacks Struppek et al. [25] describe detection evasion attacks
that employ gradient-based modifications of images. The attacks introduce spe-
cific perturbations to an original image X with targeted content. The perturba-
tions are obtained by one or more optimization steps using a generic property of
the neural network used by NeuralHash to extract image features. Specifically,
that hash computations are differentiable and gradient descent can be used to
find hash collisions [5].

Struppek et al. [25] demonstrated three levels of the attack that depend on
the perturbations that are introduced. In a standard attack, any pixel can be
modified. In an edges-only attack, the edges of objects in an image are perturbed.
In a few-pixels attack, only a minimum amount of pixels can be manipulated.
In general, the greater the restrictions on perturbations, the less the visual dis-
crepancies seen in the modified images.

Figure 2 shows detection evasion attacks on NeuralHash using gradient-based
modifications [25]. The top row of images shows the original image with targeted
content and three modifications of the original image using standard, edges-only
and few-pixels modification attacks, respectively. The row of text between the
two rows of images shows the NeuralHash values of the original and modified
images. The bottom row of images shows the differences between the original
image and modified images where black corresponds to no pixel change and white
corresponds to a pixel change.

Struppek et al. [25] define the optimization problem as:

min
X′

LMSE(X
′,
∼
H)− λ ∗ SSIM(X ′, X) s.t. d(H(X ′),

∼
H) > δH

where LMSE() is a negative mean squared error (MSE) function used to increase
the hash discrepancy between an image X and its manipulated counterpart X ′
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(X,X ′ ∈ [−1, 1]h×w×c),
∼
H = H(X) and a threshold δH expresses the proportion

of bits changed in the hash of the modified image.
To minimize visual perturbations, LMSE is influenced by a penalty term based

on the structural similarity index measure SSIM between the images weighted by
a parameter λ. SSIM values range from zero to one, the closer the SSIM value is
to one, the more similar the images. Readers are referred to [27] for details about
SSIM. The optimization ends when the Hamming distance d(H(X ′), H(X)) be-
tween the NeuralHash values of the original and perturbed images exceeds the
threshold δH .

To evaluate the attacks, experiments were conducted on the first 10,000 sam-
ples of the ImageNet test split [23]. The optimization steps on the images were
performed using Adam [12].

Struppek et al. [25] selected the success rate metric and the SSIM metric for
visual similarity. However, they assessed the effort required to modify an image
only in terms of the optimization steps required, not the time required for image
modification.

All three levels of attacks created visually imperceptible evasion images. To
explore the differences, Struppek et al. [25] proceeded to evaluated them us-
ing the metrics. The success rates were almost identical for the standard and
edges-only attacks, 100% and 99.95%, respectively; in the case of the few-pixels
attack, the success rate was slightly lower at 98.21%. The SSIM values were very
similar. The standard, edges-only and few-pixels attacks yielded SSIM scores
of 0.9999, 0.9996 and 0.9989, respectively. The optimization step metrics varied
considerably – about five steps for the standard attack, about 150 steps for the
edges-only attack and about 3,095 for the few-pixels attack. These results ques-
tion whether the edges-only and few-pixels attacks provide any additional value
compared with the standard attack. The results also demonstrate that it is very
easy to achieve at least a small change in the NeuralHash value of an image.

Struppek et al. [25] only gave detailed metrics for δH = 0 (i.e., images are
perturbed until one bit in their hashes are flipped). For higher values of δH , they
only published a single graph showing the relative changes in the evaluation
results compared with those obtained with δH = 0.

5.2 Hash Collision

A hash collision attack is similar to a second preimage attack in cryptographic
hashing. The goal is to modify an image X showing non-targeted content in a
way that alters its perceptual hash H(X) to match the perceptual hash in the
targeted content database [22, 25]. The perturbed image could be completely
synthetic and not show any perceivable content or it could be based on a specific
image that is manipulated while keeping its visual perception hash the same.

In this scenario, an attacker must be able to generate H(X) and must know
the perceptual hashes in the targeted content database. Access to the targeted
content database may be controlled, but an attacker needs to know at least one
hash that would lead to a collision.
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A hash collision attack could be used in two ways. One use case is denial
of service. The attack would generate and disseminate large numbers of non-
targeted images that lead to hash collisions. This would induce a PHTCS system
to produce numerous false positives, eventually overwhelming the system.

The second use case is framing innocent users. In this case, an attacker could
produce collision images and send them to a victim. Depending on the policies
in place for the PHTCS system, moderation actions against the victim could
range from account deactivation to criminal prosecution. Groups of individuals
could also be targeted by sending innocuous images whose hashes collide with
those of images containing CSAM. All the members of the group who receive,
store or disseminate the images would be flagged by the PHTCS system that is
supposed to only flag CSAM [22, 25]. While collision attacks can be leveraged by
a variety of actors, a key obstacle for non-government and low-resource actors is
gaining access to the targeted content database.

PDQ Attacks Hash collision attacks can be developed to target Meta’s PDQ.
The attack starts with a known hash H(X) of an image X in a targeted content
database. The attack requires the hash H(X), but if only X is known, H(X)
would probably be easy to compute. Additionally, an initial image S is required,
which is transformed into a new image X ′ that is perceptually similar to S, but
with d(H(X), H(X ′)) < T where d() computes the Hamming distance between
the images and T is a preset threshold.

The perturbations that create image X ′ are identified by iteratively employ-
ing indirect Monte Carlo approximations of the hash function gradients that
minimize loss terms over hash distances and perturbation sizes [22]. The per-
turbations should be minimal so that they do not interfere with the visual per-
ception of the image [22]. Each iteration would identify a perturbation vector
δ that makes minimal changes to X ′ while decreasing the Hamming distance
d(H(X), H(X ′ + δ)). This vector would then be added to X ′ and the iterative
process repeated until d(H(X), H(X ′)) < T holds.

Since PDQ is not differentiable, the gradient must be estimated for each
iteration to proceed. At each step, H(X ′i) is computed for the current candi-
date image X ′i as well as ∆i, the current distance to the target hash. Next, q
perturbations p1, ..., pq are generated where q determines the accuracy of the
approximation. In [22], the size changes based on the iteration number. For each
perturbation, the change in the hash value cj is computed according to the target
function [22]:

cj = d(H(X), H(X ′i + pj))− d(H(X), H(X ′i))

Next, the changes cj are used to compute a weighted average over the pertur-
bations [22]:

δ′i =
1

q

q∑
1

cj ∗ pj
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Fig. 3. Gradient estimations leading to a PDQ hash collision (from [22]).

Finally, the gradient δi used in the iteration is obtained by normalizing δ′i and
multiplying it by the learning rate λ [22].

Figure 3 shows the iterative process of estimating gradients that lead to
collisions. The top portion of the figure shows the changes to the images up
to the colliding target image. Below the images are the steps in hash space.
The thick arrows in the figure denote the gradients used to move closer to the
colliding hash during successive iterations [22].

Prokos et al. [22] used a threshold T of 90 in their experiments. However, in
a real system the threshold setting would depend on various factors, especially
the likelihood of false positives. The experiments were performed with 30 image
pairs randomly selected from the ImageNet validation set [23]. All 30 image pairs
had PDQ hash collisions within the threshold, requiring up to 6,350 iterations.
The execution time for finding collision hashes for all 30 pairs was about three
hours [22].

Figure 4 shows a hash collision attack on PDQ over several iterations [22].
The progression of images in the top row from left to right starts with an image
of a bird. Successive images get more perturbed while the Hamming distance
between the PDQ hashes of each successive image and the original image is
reduced, until the final image of a man is obtained. The bottom row of images
shows the differences between the original image and modified images where
black corresponds to no pixel change and white corresponds to a pixel change.
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Fig. 4. Hash collision attack on PDQ (from [22]).

5.3 Data Leakage

A data leakage attack seeks to extract information from a perceptual hash. A
perceptual hash function extracts image features and converts them to a hash
value. This means that a perceptual hash contains some image information [25].
In order to extract information, an attacker would have to collect as many per-
ceptual hashes as possible (to correlate the findings) and would need access to
and details about the perceptual hash function [25].

The severity of data leakage depends on how much information can be ex-
tracted from a hash. A data leakage attack is less severe if the extracted data
only indicates attributes of the original image. Thus, an attacker could derive
some general statements about the original image, such the image shows a dog or
contains two humans. In a more severe attack, it would be possible to reconstruct
portions of the original image from its hash, such as a thumbnail version [22].
Of course, since perceptual hashing compresses a variable-sized image to a fixed
size, only a low resolution version of the original image could be reconstructed.

In addition to the amount of information that can be extracted, it is impor-
tant to consider the potential victims of data leakage. A PHTCS system processes
perceptual hashes of two types of images, user images and targeted content im-
ages. Both types of perceptual hashes should be protected. Safeguarding user
hashes protects user privacy even if only limited image information can be ex-
tracted [25]. Therefore, user hashes should always reside on user devices and
not be transmitted to servers unless there are targeted content matches. When
user hashes are transmitted to servers, the hashes should be safeguarded on the
server-side so that only authorized access is possible.

Information leakage from targeted content hashes that enables images to
be reconstructed would have disastrous consequences [22]. Therefore, targeted
content hashes should have strong protections. Moreover, even during client-side
scanning, the hashes should never be stored on user devices. Apple [2, 6] and
Kulshrestha and Mayer [16] have provided suggestions about how such a system
might work.
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Fig. 5. Image reconstructions from PhotoDNA hashes [4].

PhotoDNA Attack Research on reconstructing images from perceptual hashes
is sparse. However, an informal research article in the form of a blog post [4]
discusses the reconstruction of images from Microsoft’s PhotoDNA perceptual
hashes [19]. Since PhotoDNA is not published and can only be used under a
strict non-disclosure agreement, the data leakage attack was developed by reverse
engineering the PhotoDNA algorithm.

Specifically, the data leakage attack employs a trained neural network that
takes a PhotoDNA hash as input and generates a representation of the original
image [4]. The neural network training dataset comprised images and their Pho-
toDNA hashes. In fact, the data leakage attack only became possible because
the compiled PhotoDNA code became available and was reverse-engineered to
compute PhotoDNA hashes of training images for the training dataset [4]. The
results of image reconstruction strongly depend on the similarity between the
training dataset and the unknown images to be reconstructed. For example,
reconstructing images with faces of celebrities would work best if the neural
network was trained on the same type of images [4].

Figure 5 shows examples of image reconstruction (inverted images) from Pho-
toDNA hashes [4]. The reconstructions, which are very blurry, are deemed “good
results.” In many cases, the results are much worse [4]. Thus, it is questionable
if a data leakage attack could identify a user from a user hash or produce a
detailed image from a targeted content hash.

5.4 Evaluation of NeuralHash Detection Evasion

Unfortunately, Struppek et al. [25], who devised the detection evasion attacks
on NeuralHash, did not provide detailed evaluations of their results. Specifically,
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Table 1. Expanded evaluation of detection evasion attacks on NeuralHash.

δH 0 0.05 0.1 0.15

SR 100% 100 100% 100%
Success 10,000 10,000 10,000 10,000
Failure 0 0 0 0

SSIM 0.9998 ± 0.000 0.9991 ± 0.002 0.9976 ± 0.004 0.9953 ± 0.007
(Av. & SD)
Maximum 0.9999 0.9999 0.9998 0.9997
Minimum 0.9894 0.9593 0.9097 0.8675

Time (s) 3.5 ± 3.3 15.1 ± 14.4 26.7 ± 19.7 38.7 ± 24.2
(Av. & SD)
Maximum 71.1 152.1 203.3 308.3
Minimum 1.5 1.7 1.8 2.5

Steps 5.4 ± 4.9 20.65 ± 19.5 42.3 ± 29.2 61.9 ± 35.6
(Av. & SD)
Maximum 102 294 338 393
Minimum 4 4 4 4

Evaluation 3.9 13.4 24 34.6
Time (h)

they computed the success rate (SR) and SSIM metrics, but did not provide
information about the time requirements for optimizing their gradient-based de-
tection evasion attacks on NeuralHash. The average optimization steps required
were provided, but no information about the time required for single steps. The
evaluation also focused on finding minimal hash changes (i.e., one flipped bit).
Additionally, a brief overview was provided about how the SR and SSIM values
and number of optimization steps would change with larger differences in the
hash values.

This section builds on the work of Struppek et al. [24] by verifying their
SR and SSIM results, expanding their evaluation to include the time needed
to create detection evasion images and evaluating the attack efficacy for larger
minimum Hamming distances δH between the NeuralHash values of the original
and modified images. The code provided by Struppek et al. was modified slightly
to include time measurements in the logging. Next, the logged metrics were
computed and reported. The same image dataset (i.e., first 10,000 images from
ImageNet ILSVRC2012 test split [23]) and experimental setup were employed.

Table 1 shows the expanded evaluation of the detection evasion attacks on
NeuralHash (see Table 2 in [25] for a direct comparison). The experiments used
different Hamming distance thresholds δH from the set {0, 0.05, 0.1, 0.15, 0.2}.
Note that threshold δH = 0 is the default attack mode where an image is per-
turbed until only one bit in the hash of the modified image is changed. The
threshold δH = 0.1 means that at least 10% of the hash bits are flipped. The SR
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results are provided as percentages as well as the absolute numbers of successful
and unsuccessful attacks in the dataset. For the other three metrics, SSIM, time
and steps, the average, standard deviation, and maximum and minimum values
are provided.

The results show that across the range of experiments, all 10,000 images
were successfully perturbed to evade detection determined by varying the δH
threshold. Furthermore, the average SSIM values are consistently very high over
all the experiments. Even in the experiment with δH = 0.15, the average SSIM
value obtained is 0.9953 with a small deviation, which would correspond to
a nearly indistinguishable perturbed image. However, some outliers do exist,
starting in the experiments with δH = 0.1. These outliers would probably show
visible perturbations because the minimum SSIM value drops to 0.9097 and even
down to 0.8675 for δH = 0.15. The SR and SSIM results in Table 1 confirm the
results presented by Struppek et al. [25].

Table 1 shows that the time required for image perturbations increases con-
siderably for high δH values. The increase in the time requirement as δH goes
from zero to 0.05 is large and continues to rise at an average of 38.7 s per image
when δH = 0.15. The time requirements deviate greatly from the average, which
means that the images are very different in how easily they can be perturbed.
The trend is also seen in the minimum and maximum values that strongly deviate
from the average values. The attack on a single image, in the case of δH = 0.15,
requires a maximum of 308 s (more than five minutes), which is a long time.

Unfortunately, no patterns are discerned that would provide insights into
what makes images easy or hard to perturb in the experimental setup. However,
an average of 38.7 s to perturb an image is not very high considering the attack
scenarios. The last row in Table 1 lists the evaluation times to provide a sense of
how much time an attacker would need to perturb a large image dataset as used
in the evaluation. Indeed, the evaluation times show that a determined attacker
is definitely capable of executing detection evasion attacks on large datasets.
Of course, the time measurements are strongly influenced by the computational
resources used in the experiments. Fortunately, the downloadable code available
at [25] can execute on graphical processor units (GPUs), which would speed up
successful attack development.

6 Conclusions

The dissemination of CSAM on the Internet is a serious problem and techno-
logical approaches are required to combat its spread and enable the prosecution
of perpetrators. However, it is important to maintain user security and privacy
while enabling law enforcement to scan images for illegal content. PHTCS has
been suggested as a solution that balances these two requirements. This chapter
has discussed the state-of-the-art in PHTCS and conducted an extensive evalua-
tion of potential attacks. Certain problems must be addressed to enable effective
PHTCS deployments that would be acceptable to all the stakeholders.
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A key problem raised by this research is that PHTCS effectiveness is severely
limited by attacks such as detection evasion, hash collision and data leakage. A
skilled individual could create and disseminate tools that manipulate CSAM
to evade detection, rendering PHTCS systems essentially useless. Hash colli-
sion attacks could be used to create innocuous images with the same perceptual
hashes as known CSAM images. Large numbers of these innocuous images could
be disseminated to cause PHTCS to raise alerts, eventually overwhelming the
system to result in denial of service. More insidious is the possibility that in-
nocuous images could be used to frame individuals and groups with possessing
and disseminating CSAM, exposing them to criminal investigations and poten-
tial prosecution. Data leakage attacks, which invert perceptual hashes to obtain
portions or low-resolution versions of the original images, pose privacy risks to
subjects who appear in the original images as well as to users. Clearly, additional
research is needed to harden perceptual hashes and render them attack-resistant.

Another problem is that perceptual hashing technologies and processes and
policies for their use are often developed and deployed in secret. Tech compa-
nies, non-governmental organizations, law enforcement, other government agen-
cies and even researchers are cautious about disclosing details fearing that they
may help perpetrators evade exposure. While this is understandable, it hinders
informed discussion and the lack of transparency spreads mistrust in the re-
search community and user base. A PHTCS solution that balances child safety
and security and user privacy concerns can only become operational with mutual
trust and collaboration. It is hoped that this chapter will stimulate discussion,
research and, eventually, viable PHTCS deployments.
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