
lable at ScienceDirect

Forensic Science International: Digital Investigation 40 (2022) 301344
Contents lists avai
Forensic Science International: Digital Investigation

journal homepage: www.elsevier .com/locate/ fs idi
DFRWS 2022 EU - Selected Papers of the Ninth Annual DFRWS Europe Conference
ForTrace - A holistic forensic data set synthesis framework

Thomas G€obel a, *, Stephan Maltan a, Jan Türr b, Harald Baier a, Florian Mann c

a Research Institute CODE, Universit€at der Bundeswehr München, Germany
b Department of Computer Science, Technical University Darmstadt, Germany
c IT Security Infrastructures Lab, Friedrich-Alexander University Erlangen-Nürnberg, Germany
a r t i c l e i n f o

Article history:

Keywords:
Forensic image generation
Data synthesis
User simulation
Forensic data set
Digital forensic corpora
Forensic education
Forensic tool testing
* Corresponding author.
E-mail addresses: thomas.goebel@unibw.de (T. G€o

de (S. Maltan), jan.tuerr@stud.tu-darmstadt.de (J. T
(H. Baier), florian.mann@fau.de (F. Mann).

https://doi.org/10.1016/j.fsidi.2022.301344
2666-2817/© 2022 The Authors. Published by Elsevier
a b s t r a c t

Digital forensic experts are confronted with a wide variety of investigation objectives, e.g., to deal with an
infected IT system. The same holds for digital forensic tools. Mostly different sources of digital traces have
to be inspected including persistent storage devices (e.g., SSDs, SD cards, USB drives), volatile main
memory snapshots, and network captures, respectively. In order to train experts and tools and keep their
knowledge and capabilities up-to-date, a capacious amount of realistic, timely training data is necessary.
However, due to different reasons like privacy, secrecy, or intellectual property rights there is a large gap
in digital forensic training data. In recent years different synthesis frameworks to generate realistic
digital forensic data sets have been proposed. However, none of these frameworks provides a holistic
approach to generate realistic digital forensic relevant traces of different sources. In this paper we
introduce ForTrace, a holistic framework for the simultaneous generation of persistent, volatile and
network traces. Our approach is based on the data synthesis framework hystck. We explain our
extension of hystck by defining properties of a holistic data set synthesis framework and by discussing
different forensically relevant scenarios and their implementation in ForTrace. We then successfully
evaluate ForTrace with respect to diverse realistic and complex scenarios. ForTrace is open source
and may be adapted or extended with respect to individual needs.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The advancing digitisation leads to numerous challenges and
threats for the security of companies and private individuals. To
overcome these challenges, well-trained forensic experts are
neededwho are able to reconstruct the exact sequence of actions on
modern devices and operating systems after a crime and find the
traces left behind by the criminals. In order to keep up with the
complexity and variety of today’s forensic investigations, forensic
experts typically need a large amount of training data covering a
broad spectrumof criminal activities to train their skills and validate
their digital forensic tools. In general, themore forensically relevant
scenarios (like a data breach, a ransomware, or a phishing scenario)
are covered by the training data sets, the better. The need for digital
forensic images and the importance of such data corpora for digital
forensic education, training, research, tool andprocess development
bel), stephan.maltan@unibw.
ürr), harald.baier@unibw.de

Ltd. This is an open access article u
and validation has been pointed out several times in the past
(Garfinkel, 2007; Garfinkel et al., 2009;Woods et al., 2011; Yannikos
et al., 2014; Grajeda et al., 2017). In recent years, several repositories
for digital forensic data sets have been published, including disk
images,mobile device images,memory dumps, and network packet
captures. Themost prominent platforms among them are (1)Digital
Corpora1 (Garfinkel et al., 2009), (2) the Computer Forensic Reference
Data Sets (CFReDS) project2 at NIST (NIST, 2021), and (3) theDatasets
For Cyber Forensicsplatform3 (Grajeda et al., 2017). Althoughmanyof
the data sets found on these platforms are treated as standardised
digital forensic corpora, they often have drawbacks, such as insuf-
ficient diversity, poor timeliness, unrealistic or missing background
noise (i.e. no regular usage patterns like email or browser content),
and most importantly, unknown ground truth.

Therefore, in addition to the mere existence, i.e., the quantity of
such data sets, the quality of the data sets undoubtedly also plays an
important role. For example, it is important to have an appropriate
1 https://digitalcorpora.org.
2 https://cfreds.nist.gov.
3 https://datasets.fbreitinger.de.

nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:thomas.goebel@unibw.de
mailto:stephan.maltan@unibw.de
mailto:stephan.maltan@unibw.de
mailto:jan.tuerr@stud.tu-darmstadt.de
mailto:harald.baier@unibw.de
mailto:florian.mann@fau.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2022.301344&domain=pdf
https://digitalcorpora.org
https://cfreds.nist.gov
https://datasets.fbreitinger.de
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2022.301344
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2022.301344


T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
number of traces at different layers available within an image. This
is because sophisticated forensic analysis is no longer typically
performed with a single data source, but requires clever correlation
of different digital traces based on a recurring attack pattern
(Amato et al., 2017). In such a multi-source forensic investigation
not only the digital traces on the persistent storage are analysed,
but also further traces, like those available in the volatile main
memory or in the network traffic. We believe that it is essential to
have correlated data from multiple data sources available in mod-
ern training materials to provide the most realistic experience for
trainees. Therefore, there is a need for a framework that simulta-
neously generates holistic data, i.e., correlated persistent, volatile
and network traces from the same device, including a realistic and
sufficient amount of background noise for a given scenario.

Another aspect that highlights the importance of digital forensic
data sets, and as such especially up-to-date data sets, is the
increasing use of machine learning techniques in digital forensic
analysis. Recent work in the field of digital forensics is increasingly
usingmachine learning and in particular also deep learning, e.g., for
malware classification (Le et al., 2018), for automatic Android
malware detection and family attribution (Karbab et al., 2018), for
the detection of online sexual predatory chats (Ngejane et al.,
2021), and last but not least for child pornography classification
(Dalins et al., 2018). Qadir and Noor (2021), however, conclude that
the biggest challenge in machine learning-based digital forensics
actually is the optimal selection and use of data sets. They mention
that the crime scene is constantly evolving, so it can be difficult for
the machine learning algorithm to classify the new developments
accurately. In fact, most of the popular machine learning algorithms
are based on supervised learning, which means that these algo-
rithms require a large amount of ground truth training data anyway
for proper classification.

To keep machine learning models up-to-date and train forensic
practitioners on newer data sets with actual relevant and recent
digital traces (e.g., including recent malware or ransomware sam-
ples) as well as a known ground truth, the forensic community
clearly needs a framework to create such data sets as quickly,
flexibly, and easily as possible. However, due to different reasons
like privacy, secrecy, or intellectual property rights, there actually is
a large gap in publicly available data sets in the field of digital fo-
rensics. Grajeda et al. (2017) published an article on the availability
of data sets in digital forensics. The authors analysed 715 confer-
ence and journal papers from 2010 to 2015 in terms of the uti-
lisation of data sets and if they were published. They found that (1)
many researchers create their data sets manually, (2) data sets are
mostly not shared, and (3) there is a lack of standardised, labelled
data sets available. Abt and Baier (2014) previously published a
similar paper in which they reviewed 106 network security papers
from 2009 to 2013 and reached nearly the same conclusions.

The lack of such standardised, labelled data sets indeed leads to
poor quality control of forensic tools and processes due to missing
validation capabilities, poor metrics in machine learning (e.g., weak
classification skills of a machine learning algorithm due to bad or
insufficient training and test data), and last but not least, poor
opportunities in teaching digital forensic students and analysts.
Moreover, with a lack in publicly available data sets, the digital
forensic community often faces issues like low reproducibility,
comparability and peer validated research (Abt and Baier, 2014).

Since the manual creation of high-quality training data for
digital forensics is tedious, time-consuming and error-prone
(Woods et al., 2011), various data synthesis methods have been
proposed in recent years to automatically generate realistic digital
forensic data sets. A popular way to create such data sets is to use a
framework that simulates real user behaviour to automatically
2

create forensically relevant artifacts. However, to the best of our
knowledge, there is currently no publicly available framework
capable of generating traces at the persistent, volatile memory and
network layer simultaneously.

In this paper we introduce ForTrace, a holistic synthesis
framework for generating forensic data sets to support the digital
forensic field with respect to forensic training, tool development
and evaluation. The acronym ForTrace is composed of the two
terms Forensics and Traces. This specific naming is inspired by the
term Fortress and is meant to remind us that finding the correct
digital traces can be just as difficult as the conquest of a fortress.
ForTrace adopts a holistic approach to generate forensically
relevant data sets, enabling the simultaneous generation of
persistent, volatile and network traces. The holistic synthesis is
put into practice by firstly creating a model of a realistic system,
the so-called scenario, secondly simulating the user’s actions and
behaviour automatically within a virtual machine (VM), thereby
storing the forensically relevant traces in the resulting disk and
memory dumps and network captures. These images can then be
used as labelled data sets for a forensic investigation, as training
data for machine learning, or for a sophisticated forensic tool
development and evaluation. By properly simulating
humanecomputer interactions, the resulting artifacts should be
indistinguishable from regular user interactions at best. This
behaviour is validated by testing various realistic and complex
scenarios. In fact, the modular structure of ForTrace enables
accurate approximation of humanecomputer interactions for a
highly customisable data generation, as well as easy synthesis of
large amounts of relevant data (i.e., incriminating traces), as well
as non-relevant data (i.e., background noise), using the built-in
ForTrace Generator module. The term ’customisable’ refers to
the framework’s ability to simulate different scenarios depending
on the combination of modules chosen in the respective config-
uration file. This allows the user to configure the synthesis of
different scenarios as desired, e.g. in some scenarios s/he could
only create permanent traces, while others would leave traces at
all levels. In addition, the ForTrace Reporter component logs the
ground truth, i.e., it records in detail all actions performed during
the synthesis of a scenario.

ForTrace is fully open source and available to the digital
forensics community. The latest version of the framework's
source code can be downloaded from our GitHub repository:
https://github.com/dasec/ForTrace. The official documentation of
the framework with detailed installation instructions, details on
all currently available features and information on how to add
custom code to simulate your own scenarios with any protocols
and applications can also be found in the ForTrace repository.

The remainder of this paper is structured as follows: Section 2
presents related work focusing on the synthesis of digital forensic
evidence. Then, in Section 3 we list properties of a holistic data set
framework that we used during the software design of ForTrace.
In addition, the related work is assessed with respect to these
properties. Section 4 shows the current framework architecture
and the exact functionality of ForTrace, exploring its exact syn-
thesis capabilities based on the Generator and Reporter compo-
nents. In Section 5, the data synthesis process with ForTrace is
demonstrated in more detail using two diverse realistic and com-
plex scenarios. We then evaluate the actual quality of the digital
traces generated by the automated user simulation using common
digital forensic tools. Finally, in Section 6 we summarise our work
and point out open tasks that will extend our data set synthesis
framework in the future. We also mention the many opportunities
available to the digital forensics community for future work in this
area.

https://github.com/dasec/ForTrace


T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
2. Related work

In this Section we distinguish between well-known, manually
created forensic images and image generators that are used to
create forensic images automatically.

2.1. Manually generated images

In digital forensics it is a widespread approach for instructors to
spend a lot of time manually preparing disk images, network cap-
tures, memory dumps, and other relevant forensic material that can
be used, for example, as forensic challenges for training purposes
(Garfinkel, 2007). For this purpose, a forensically relevant scenario
is often replayed within a VM. Among the most popular publicly
shared forensic images are those of Carrier (2021), CFReDS (NIST,
2021), DFRWS (2021), Digital Corpora (Garfinkel, 2007) including
the Real Data Corpus4 (Garfinkel, 2012), Hadi (2021) and
UNHcFREG (Grajeda et al., 2017).

However, creating realistic forensic corpora that is plausible,
consistent and useful is indeed a complex task that requires
extensive planning to achieve the desired outcome (Woods et al.,
2011). Manually generated images are often very simplistic due to
the manual effort required to perform enough actions in a given
scenario. Relevant background noise, that would normally occur in
real data sets, is typically missing in synthesised data sets.

Another major drawback of manually created images is the lack
of adaptability. Once the image is created, it is static in that it cannot
be easily adjusted without recreating the entire image (G€obel et al.,
2020). However, a recurring use of static images, especially in ed-
ucation, is mostly not possible. Therefore, this work aims to provide
a solution that allows the forensic community to create forensic
images as dynamically as possible. For example, modifying the
result of an automatically generated image by simply adjusting the
configurable parameters of ForTrace before data synthesis (e.g., to
determine in advance which traces should be present in the image
later on) would greatly simplify the reuse of the generated image.

2.2. Automatic forensic image generators

Several attempts have been made in the past to develop tools
and frameworks to automate the data synthesis process in digital
forensics. We will compare their strengths and weaknesses and
thereby explain what is missing and what was our main intention
in developing ForTrace alongside the existing tools.

The Forensic Image Generator Generator (Forensig2)
(Moch and Freiling, 2009, 2012) opens up the possibility to produce
generators for forensic images for forensic analysis exercises. The
input to Forensig2 consists of a script written by the instructor. The
output consists of a file system image to be analysed by students
and an automatically generated human readable report defining
the ground truth. A clear advantage of Forensig2 is that the traces
are created in a Qemu-based VM and that it can be extended with
own scripts written in Python. This makes it possible to freely
configure the system. However, this framework is outdated and no
more maintained. Its original website is no longer accessible.

The Computer Forensic Test Image Generator (ForGe)
(Visti et al., 2015) is a framework capable of creating forensic test
images by hiding previously defined target files in a NTFS fil-
esystem besides regular files. It provides a user interface and takes
instructions in form of database entries. Its output contains images
and information sheets. Although the tool is available on GitHub, it
has not been further developed since 2015. Considering our
4 https://wiki.nps.edu/display/DEEP/DataþSets.

3

intended holistic approach, it does not provide network captures
and memory dumps.

The Virtual Machine POPulation system (VMPOP)

framework (Park, 2018a) is also designed for populating operating
systems or applications, and extracting forensically interesting data
from populated systems. VMPOP assists the development of system-
generated data along with a virtualisation system and elaborate
automated VM control. As a practical proof-of-concept Park dem-
onstrates how to automate the generation of a Windows Registry
corpus using PowerShell. This work partly influenced us in terms of
adding PowerShell as one of the control components to ForTrace

in order to simplify the generation of Windows artifacts.
EviPlant (Scanlon et al., 2017) focuses on the optimisation of

forensic scenarios distribution by first providing a base disk image
for students and then deliver scenarios as evidence packages,
which only contain the difference between the base image and the
instructor’s modified image. This has the advantage that large files
do not have to be sent numerous times, which in particular is of
interest for teaching purposes. The last commit to the project was
in August 2020, updating the code to be compatible with Python 3.
Due to its differential design, EviPlant does not provide holistic
data, such as network captures and memory dumps.

Amore recent work that, besides creating traces on the hard disk,
also captures network traces is the TraceGen (Du et al., 2021)
framework. It focuses on creating disk images with weeks and
months of simulated user interaction defined by a user provided
script file within a short time. However, the approach is currently
handled as a prototype and its source code is not publicly available. To
combine the advantages of manual and automatic trace generation,
APIs such as pywinauto are used to simulate user interactions in the
GUI. For example, copying a file viaWindows Explorer creates more/
other traces than simply copying a file via the command line. (e.g.,
Thumbnails, Prefetch, etc.). Since this approach currently is only a
proof-of-concept, it reads as if all available scenarios are in Python
scripts or all individual actions are in lists. This does not yet result in a
high level of user-friendlinesswhile generating images, especially for
less technically experienced users.

hystck (G€obel et al., 2020) is a framework that generates traces
on hard disk and network layer. This can either be done partially
automated with Python scripts or fully automated via YAML
configuration files. Through the support of automated data synthe-
sis, it is possible to create a wide variety of traces with little effort,
which can be distributed efficiently due to the division into template
and differential images. However, considering our intended holistic
approach, hystck also lacks in providing a memory dump.

In addition to the aforementioned frameworks, which are all
based on peer-reviewed papers, two other tools were found during
our literature research. First, ForGen (Keighley, 2021), a Ruby based
generator for forensic images, creates on the one hand forensic disk
images for training purposes, on the other hand individual test
sheets that can be worked on by the students. These test sheets can
be automatically compared to a mark sheet afterwards which is
also created during the generation. The other tool is called For-

GeOSI which is based on a bachelor thesis and uses a wrapper for
pyvbox, a Python implementation of the Virtualbox COM API, to
control the user behaviour (like keystrokes and browser activity
within Windows and Linux VMs). Further it creates a log of the
actions performed during an execution. Unfortunately, it seems like
both tools are no longer maintained by their authors. Also, there is
only little documentation for both tools, so they should be treated
with appropriate caution.

In Table 1 we summarise the previously mentioned synthesis
tools and provide their name and, if available, their peer-reviewed
publication, their release date and date of last update, their pro-
gramming language, and the link to their Git repository if their

https://wiki.nps.edu/display/DEEP/Data+Sets
https://wiki.nps.edu/display/DEEP/Data+Sets


Table 1
Overview of existing data synthesis frameworks.

Framework/Publication Release Last
update

Language Code
available

Image
type

Forensig2/(Moch and
Freiling, 2009, 2012)

2009 Never Pythona � P/-/-

ForGeOSI/- 2014 05/
2 014

Python 2 ✓/(Fragg,
2014)

P/-/-

ForGe/(Visti et al., 2015) 2015 03/
2 015

Python 2 ✓/(Visti,
2015)

P/-/-

ForGen/- 2016 02/
2 017

Ruby ✓/(Keighley,
2017)

P/-/-

EviPlant/(Scanlon et al.,
2017)

2017 08/
2 020

Python 3 ✓/(Du, 2020) P/-/-

VMPOP/(Park, 2018a) 2018 03/
2 018

Python 3 ✓/(Park,
2018b)

P/-/-

hystck/(G€obel et al., 2020) 2020 04/
2 021

Python 3 ✓/(da/sec,
2021)

P/-/N

TraceGen/(Du et al., 2021) 2021 Never Pythona � P/-/N

a No information about the exact Python version.

Table 2
Properties of existing data synthesis frameworks.

Framework/Publication OS Hol Uniq Lab Tim Act

Forensig2 (Moch and Freiling, 2009, 2012) � � N/A ✓ � �
ForGeOSI ✓ � � ✓ � �
ForGe (Visti et al., 2015) ✓ � � ✓ � �
ForGen ✓ � � ✓ � �
EviPlant (Scanlon et al., 2017) ✓ � � ✓ ✓ ✓

VMPOP (Park, 2018a) ✓ � � ✓ ✓ �
hystck (G€obel et al., 2020) ✓ � ✓ ✓ ✓ ✓

TraceGen (Du et al., 2021) � � N/A ✓ ✓ N/A

T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
source code is publicly available. The last column specifies the
image type that the frameworks can create (P ¼ persistent;
M ¼ memory; N ¼ network). One major drawback of the existing
frameworks clearly is that there currently is no framework that is
able to generate traces on all layers simultaneously. Only
hystck and TraceGen are capable of generating traces at least on
two levels (persistent and network), the latter, however, not being
publicly available. However, as mentioned earlier, it is usually only
through the availability of traces on all three layers that the forensic
trainee as well as the practitioner is able to gain a much more
comprehensive view of a criminal case. For example, in a malware
case, important information such as the actual infection vector or
further relevant artifacts that are only in memory would be
completely missing. However, those could be the only information
that finally helps to solve the case.
3. Properties of a holistic synthesis framework

Based on our discussion in Section 2 about related work and its
different strengths and weaknesses, we next gather properties that
we consider as reasonable for a holistic data set synthesis frame-
work and that form the basis for our design of ForTrace. We then
shortly explain our choice in favour of hystck.

Grajeda et al. (2017) formulated three critical features of a digital
forensic data set to ensure high-quality results. First availability
means that the data set is publicly distributed by common channels
like a website or a software repository to ensure reproducibility.
Next quantity addresses the aspect that the data set contains a
reasonable amount of data. Finally quality considers the property
that the data set guarantees accurate results due to labels and
similarity to real-world data.

We transfer these properties to a data set synthesis framework
by extending and formulating more fine-grained properties:
4

OS Free and open source availability: the framework including its
source code must be downloadable without registration and fees
from a public web resource (e.g., a website or a Git repository).
Hol Holistic quality: the framework provides digital forensic
traces on different layers including at least persistent, volatile
and network traces.
Rel Realistic quality: it is hard for a digital forensic user to
distinguish the generated traces from real traces.
Templ Templates: the framework comes with realistic templates
representing forensic relevant use cases, e.g., malware, data
breach, data hiding scenarios. Furthermore test-scripts should
be provided for a scenario-based evaluation.
Conf Customisation: the framework must be easily configurable
with respect to the chosen scenario, e.g., through a text-based
configuration file or a GUI.
Uniq Uniqueness of data set: based on the chosen configuration,
the generated data set differs from further data sets generated
based on the same configuration since the framework in-
troduces a certain degree of randomness in terms of background
noise.
Lab Ground truth: the framework outputs a labelled data set, i.e.,
besides the data set it supplies the respective ground truth with
respect to the configured scenario.
Use Usability: the framework may be used by an ’ordinary’
experienced digital forensic user.
Tim Timeliness: the framework generates a data set with respect
to contemporary hard- and software.
Act Activity: the framework is maintained and used in the digital
forensic community.

In Table 2 we assess the presented frameworks of Section 2 with
respect to the most important properties of a data synthesis
framework. If an assessment is possible the mark indicates if a
particular property is respected by the framework or not, respec-
tively. If N/A is assigned, this is because sparse information is
available due to the lack of accessible source code, so no definitive
statement can be made. The result of the evaluation is that
hystck is the best choice as a framework basis to be extended to a
holistic synthesis framework, as it addresses most of the properties
and already generates traces on at least two layers, persistent and
network, without focusing on memory artifacts so far.

4. ForTrace structure and functionality

We now give details on the modular structure of our data syn-
thesis framework ForTrace in this section and provide an over-
view of its available data synthesis features and additional
assistance for the evaluation process.

4.1. Basic framework functionality

The basis of ForTrace and its functionality is the simulation of
human-computer interaction through the use of a client-server
architecture. The server-side host component creates and man-
ages a client-side guest component by using open-source software
products, such as KVM, Qemu and libvirt. To synthesise data, the
host and client communicate over a separate private network. This
ensures separation between the artifacts being generated and the
management traffic. To ensure generation of realistic traces on
persistent, memory, and network layers, ForTrace simulates
human-computer-interaction by employing so-called User Interac-
tion Models. The framework generates this model on the host-side
and executes the respective actions on the guest components to
realise a specific and realistic scenario.



Fig. 1. Basic framework architecture.

T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
The current focus during the publication of ForTrace is on
using a Linux host machine and Windows 10 guests5. Since the
hystck framework was originally developed in Python 2, the core
framework has now been fully migrated to Python 3 compatibility,
and since then all our additions via ForTrace have been developed
using the latest Python 3 version. Python was chosen as it is a
largely platform-independent language suitable for our use of both
Windows and Linux-based operating systems.

To both allow users to synthesise data quickly and flexibly and to
makemodifications to the framework, such as adding newmodules
without having to manually reinstall all parts of the framework,
ForTrace includes fully automated installation scripts for both
Linux hosts and Windows guests (Property: Usability). These
scripts install all necessary packages, dependencies and third-party
software on both the host and guest side. The host side script also
sets up the virtual environment including both the public and
private networks. The user only needs to perform few steps with all
of them outlined in the ForTrace documentation and in the wiki
page of the GitHub repository. Furthermore, all relevant configu-
ration files to be considered when installing and using ForTrace

are documented in the repository, including relevant installation
packets, network interfaces and relevant path configurations, etc.
(Property: Customisation).

4.2. Framework architecture

As mentioned in the previous section, ForTrace uses a basic
client-server (or guest-host) architecture and is therefore split into
two parts. The basic structure of the framework is depicted in Fig. 1.
An important aspect of the client-server architecture are the two
separate networks that are configured during the installation pro-
cess. To synthesise network traffic and have general access to the
Internet, a public network is created. Since host and guest exchange
a variety of messages during the execution of a scenario, a second
private network without Internet connection, is configured. This
removes all ForTrace-related artifacts from the network dump
and allows the user to configure additional services for more
convenient testing, e.g., the user can perform file transfers between
multiple VMs without affecting the actual network data captured.

The host-side component is called Framework Master (repre-
sented in code by 2 of the 3 core classes Virtual Machine Monitor
(VMM) and Guest). The Framework Master is responsible for
creating and managing the guest components as well as initiating
the communication over the private network. It also contains the
user-created scenarios that are supposed to be executed on the
guest component.

The VMM class is mainly responsible for organisational tasks. It
prepares the environment by cloning the prepared template. Due to
licence restrictions, it is not possible to provideWindows guests that
are pre-configured. However, ForTrace provides detailed descrip-
tion how to set up the templates aswell as scripts that fully automate
the template installation process. Next, it makes sure the communi-
cation path with the guest component is correct by checking the
created guest’s MAC address. When running a test script, all of these
actions will be carried out by the create_guest() function.

The other core host-side Guest class is mainly responsibly for the
actual communication between both components of the frame-
work. It establishes the initial connection with the guest compo-
nent and then submits the chosen scenario. Within this user-
created scenario it is determined which of the ForTrace mod-
ules will be employed to manipulate specific applications and
5 Testing onWindows 11 is currently ongoing and full support will be provided as
part of a timely update in the GitHub repository.

5

functionalities or, if a more direct approach by utilising functions
embedded in the Guest class are called, to control elementary
Windows functions and CLI inputs. It is possible to combine both
approaches without restrictions.

The guest component consists of one or multiple VMs, cloned
from a prepared template each time a new scenario is executed in
ForTrace. This ensures that new scenarios are not tainted with
artifacts from previous attempts (Property: Uniqueness). They are
also responsible for finding and establishing the communication
over a predetermined port on the private network as well as for
executing the right commands corresponding to the Framework
Master scenario. Ideally, the component will also send information
about the current state of the scenario’s execution back to the host
component. Therefore, this component is called Interaction
Manager.

It is represented by the third core class called Agent. On Win-
dows, the agent is executed via batch script every time the guest
VM starts - this mitigates the need for manual interference in the
execution of the chosen scenario. The Agent class will first establish
the private network communication channel. When the connection
is confirmed, the scenario constructed on the host-side is converted
into necessary actions which are then executed. Many of these
executed actions will be followed by a current status report that is
sent back to the Framework Master.

Fig. 2 conveys a typical ForTrace workflow. After preparing
and installing the framework on the host machine and creating a
template for the guest VM, a user can run the chosen scenario. The
VMM class will clone the template and boot the cloned VM. Sub-
sequently, the Guest class will load the User Interaction Model.
When the guest VM is running and the automatic user login has
passed, the Guest and Agent classes will continuously attempt to
establish the connection between the two components over the
private network. As soon as the connection is established, the
scenario is transferred to the client, transformed into executable
actions and executed by the Interaction Manager. To test the
correct execution of different scenarios and validate their various
artifact generations, test-scripts for each ForTrace feature are
provided together with its source-code. Anyone can run these test-
scripts on their self-created templates with current OS version
without having licensing issues. When the entire scenario is
finished, ForTrace begins shutting down the guest component. If
the user has chosen to extract one or multiple memory dumps, the
dumps will be created at the chosen time during the scenario to
ensure that the desired artifacts can be found later in the image.
The memory dumps are then stored in a specified location before
the machine is shut down. The network traffic on the public
interface is always captured using tcpdump and is stored in the
location specified in the configuration file. Unless a deletion of the



Fig. 2. Standard ForTrace workflow.

T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
guest VM is explicitly instructed, the differential persistent image is
of course also saved by default including the traces of all actions
performed.
4.3. Data synthesis features

To allow the execution of a wide spectrum of different sce-
narios, ForTrace is able to simulate different kinds of user
behaviour and application usage. A complete overview of all
currently supported data synthesis features can be seen in Table 3
in Appendix A.

The goal of all scenarios is to synthesise traces in at least one
layer - better, however, in all three layers, network traffic, memory,
and persistent storage (Property: Holistic quality). While the
network traffic of the public network is continuously recorded,
persistent storage and memory dumps are gradually formed by
simulating specific user actions. In order to have a more realistic
experience later during the forensic analysis, larger time-spans can
be simulated by changing the system date and time of the VMs,
allowing the user to simulate multiple days of system use during a
single session (Property: Realistic quality). The time is changed via
the hypervisor between different user sessions while the guest is
offline, so that it looks to the system (and later to the analyst) as if
time has simply passed since the last logon. This approach prevents
unwanted messages in the Event Log that would occur if the clock
would be changed directly in Windows.

The Generator component included in ForTrace enables the
generation of large amounts of traces without the necessity of
coding complex Python scripts. It almost completely removes the
6

requirement for advanced Python programming knowledge when
using the ForTrace framework. Therefore, a YAML file is fed to the
Generator, in which applications, actions, and distinctions between
benign and malicious data and actions to be performed, can be
defined. The YAML tags determine which modules and functions
should be called, while also aggregating all necessary parameters
for these functions. The following execution of these actions is
identical to the execution of specific Python scenario scripts, but
instead of writing the scripts manually, the synthesis is now per-
formed fully automated and can easily be adjusted as desired via
the YAML file (Property: Customisation). In addition, the benign
part of the YAML file creates a haystack of ’normal’ human-
computer interaction (i.e. important background noise) in the
resulting data sets (Property: Realistic quality). To create a changing
amount of prevalent artifacts, an additional ’random’ flag can be set
in the configuration file so that a large number of randomly selected
different websites are visited or randomly generated emails are
sent (Property: Uniqueness).

The following list provides an overview and explanation of the
most prominent ForTracemodules. For a complete overview of all
currently implemented data synthesis features, please refer to
Table 3 in Appendix A.

� Elementary functions: Many elementary OS functions are
implemented as part of the aforementioned core classes Agent
and Guest. These functions include, but are not limited to
shutting down the VM, basic file and directory operations,
manipulation of the system clock and CLI functionality. The
latter, for example, implicitly allows SSH communication and
therefore additional file transfer protocols such as SFTP, too.

� Multi-user capability: Multiple users can be created and
deleted on the guest during the scenario execution. Further, it is
possible to change the user who is executing the desired oper-
ations in an automated way (i.e. log a user in and out). This al-
lows the execution of more complex multi-user scenarios, like
shared workstations and using the impact of one user's opera-
tions on the other user.

� Anti-forensic capabilities: To control the amount of artifacts
created by relevant operations during a scenario (so-called
needles), ForTrace provides different features to either pre-
vent the creation of typical Windows artifacts in advance or
delete these artifacts afterwards. Avoiding the creation of arti-
facts is mostly done by changing relatedWindows Registry keys
to disable the artifact-creating services. This approach, for
example, allows to disable well known artifact sources on
Windows, like the Windows Thumbcaches or Prefetch data. If
the creation of artifacts can not be suppressed, ForTrace also
offers a way to wipe already created artifacts by either deleting
related Registry keys, like the UserAssist key, or by secure de-
leting files containing the relevant artifacts, like Prefetch or
Thumbcache files.

� PowerShell support: PowerShell is an important and
powerful tool in modern Windows administration with
growing popularity that has even led to Linux PowerShell
integration. Due to its vast capabilities, a PowerShell module
has been added to ForTrace. This module enables the
execution of elementary and advanced system, file, and
application functions, such as searching the system for key-
words, unattended (un)installation and execution of soft-
ware, deleting files and directories, connecting to a network
share, (un)mounting USB devices, etc.

� Browser simulation: Currently, this module’s realisation is
assisted by Mozilla’s own marionette driver. The module is
capable of simulating the most common user habits, such as
browsing websites, login to an account (e.g., on Facebook,



Fig. 3. Sample scenario: Exfiltrating data on a multi-user workstation.

T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
Instagram, etc.), downloading data as well as clicking specific
elements. Both marionette driver and the ForTrace Firefox
module employ multiple ways of navigating a website, e.g., us-
ing a website element’s xpath or id. Further browser support is
currently being developed for Chrome and Microsoft Edge.

� Email simulation: This module is capable of simulating the
most common user actions, such as login to an email account,
sending and receiving emails with or without attachments in
Thunderbird. Additionally, the module allows the user to arti-
ficially fill up its mailbox to simulate previous traffic and create a
more immersive and cohesive experience, which could be
beneficial in an educational environment for students (Property:
Realistic quality). Further email client support is currently being
developed for Microsoft Outlook.

� Encypted container support: This module currently enables
some elementary VeraCrypt functionalities such a creating,
mounting and dismounting encrypted containers as well as
transferring data into and out of the containers.

� File transfer support: This module enables basic file transfer
methods, such as transferring files or directories via the network
and over the SMB, NFS, FTP, or SFTP protocols. To configure the
required server component, this can be realised by either
installing the corresponding service directly on the host
component or by simply employing an additional service VM,
which is available within ForTrace by default and hosts
various services required by the individual scenarios (Property:
Customisation).

� Printer support: This module implements print queues for a
digital network printer. Enabling document printing thereby
allows the generation of appropriate printer traffic in the
network. Similar to the file transfer module, this requires the
user to set up a digital printer using a service like CUPS either on
7

the host component or use the printing service out-of-the-box
on the supplied service VM.

� Malware synthesis:Thismodule is able togenerate typical traces
left by common malware variants. It is split into two compo-
nents: The C&C server component, that is fully configurable, and
the malware client component. The malware is able to execute
commands sent by the server. It hooks itself to the systemusing a
variety of persistence mechanisms and carries out various ma-
licious actions, like process hollowingormalicious code injection
(compare with our validation in Section 5.2).
4.4. Report of relevant actions performed

ForTrace aims to generate large amounts of traces, especially
for education purposes and tool testing. A major part of this
generation is the creation of a ground truth for every scenario
run. The framework manages this by maintaining all relevant
executed operations and the guest-side timestamps related to
them. After the executed scenario is finished, it creates a report in
form of a XML document, containing all logged information,
sorted by the related module as well as in a chronological
timeline (Property: Ground truth). In addition, ForTrace also
contains a component that parses the XML document into a user-
friendly HTTP view.

In addition to the explicit report of all executed actions,ForTrace
also records all network traffic generated during the runtime of each
guest by using tcpdump. Besides the scenario-specific traffic, these
captures do also include all kind of Windows-related network traffic
(e.g., realistic backgroundnoise, suchasWindowsupdates,firewall or
anti-virus traffic, etc.). The pcap file is stored in the path specified in
one of the configuration files.

As already mentioned, ForTrace also allows for memory



Fig. 4. Suspicious Event Log entry after disabling service.

T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
extraction. The framework uses KVM functionalities for the
memory acquisition. If a memory dump is required, this can be
explicitly mentioned either in the test script or in the Generator.
As virsh is capable of creating other dump files, it is easily
possible to expand the framework’s data extraction
functionalities.

5. Validation of the ForTrace framework

As stated before, ForTrace aims at simulating realistic system
usage in order to create a holistic data set including all relevant
forensic artifacts. In the following section two different forensic
scenarios are presented, as well as their realisation by using the
ForTrace framework. All of the following scenarios are executed
using custom Python test-scripts, all of which are included in the
ForTrace repository. Since ForTrace is designed and developed
on base of the holistic data synthesis properties presented in Section
3, further scenarios may easily be put into practice. Some examples
of such eligible forensically relevant scenarios in the context of
ForTrace are discussed in Table 4 in Appendix C (Property: Tem-
plates). For simplicity, we call the attacker Mallory and the victim
Alice. The table also lists respective data sources (e.g., Windows
Registry, RAM dump, etc.) where a forensic investigator would
actually find the relevant artifacts after an incident. Given the di-
versity of places where relevant artifacts typically are stored, it
should get clear why it nowadays is important to keep track of
multiple data sources to fully solve a complex digital forensic case.

5.1. Validation of Windows artifacts

The first scenario demonstrates the capabilities of the frame-
work regarding multi-user scenarios and anti-forensic methods. It
demonstrates a shared workstation with benign and malicious
users, where data is extracted with the help of a VeraCrypt
container and a SMB share. Fig. 3 shows relevant actions performed
during the scenario, where a system administrator creates different
users, of which each is performing an individual set of operations.
One of these users exfiltrates critical data, by first creating another
system, as well as disabling different critical services, such as the
Windows Event Log and the creation of Prefetch files, to drastically
reduce the amount of created artifacts. The new user uses a Vera-
Crypt container to exfiltrate the critical data in a subtle way. After
this, the malicious user is deleted again and its user data is deleted
securely. This is done to wipe as many artifacts as possible that
point to the existence of this user. Finally, the disabled services are
re-enabled, so it will be less suspicious in the following forensic
analysis.

Listing 1 is a small snippet of the Python script used to execute
this scenario. This code example shows the deactivation of multiple
Windows services as well as the creation of a new user, who then
mounts and copies files to a VeraCrypt container which is then
exfiltrated to a network share. While it is making use of multiple
modules, such as Anti Forensics, VeraCrypt and User Management, all
modules are called using the ScenarioHelper utility class. This class
has two major functionalities:

� All modules and functions are aggregated into a single class and
therefore a single import, allowing greater flexibility when
writing multi-module test scripts for ForTrace.

� The ScenarioHelper adds more and clearer information to the
ForTrace Reporter, making it easier to retrace and comprehend
the scenario afterwards. An excerpt from the report for this
scenario can be seen in Listing 2.
8

Listing 1. Multi-user scenario script example code.

Listing 2. Excerpt from the report on the multi-user scenario.

The evaluation of the artifacts created by this scenario reveals a
few interesting characteristics. While deleting Event Log entries
and disabling the Event Log obfuscates the actual malicious activity,
the presence of malicious activity will, however, not be completely
hidden as security auditing is still running and error messages in



Fig. 5. Adaption of the multi-user scenario with additional memory acquisition.

T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
the system log will hint the analyst at disabled services. This can be
seen in Fig. 4. A more effective way to hide malicious activity can be
achieved with ForTrace by simply disabling the Event Log, secure
deleting the corresponding files and then re-enabling the service.

Fig. 5 depicts a small change to the final steps of the previously
explained multi-user scenario to get an idea of how easily and
flexibly an existing scenario can be changed by the dynamic
configuration file in ForTrace. The simulated user creates a Ver-
eCrypt container to hide confidential or illegal material. The
container is then moved from the local system to a SMB share.
While the malicious user inspects a password file, a memory dump
is created for later inspection. Despite secure deletion of all
persistent traces, such as the password file and the VeraCrypt
container, much of the information can still be recovered using the
network dump and the memory dump provided by ForTrace, as
long as the forensic analyst uses the appropriate tools. For example,
during our evaluation of this scenario we were able to reconstruct
the passwordwewere looking for from RAMusing Volatility. In this
way, the scenarios in ForTrace can be easily adapted to provide
Fig. 6. Malware persistency found in the Registry.

9

different levels of difficulty for the subsequent forensic analysis, i.e.,
some of the scenarios can already be solved at the persistent layer,
while others definitely require a memory or network dump
(Property: Customisation).

5.2. Malware synthesis

The second validation scenario demonstrates the ability of
ForTrace to distribute and control malware and give an overview
of the synthesised artifacts. Fig. 7 in the Appendix B depicts a
general workflow of ForTrace’s ability to synthesise traces of
malware distribution and execution. The first step is the choice of
an infection vector / dropper for the malware. Currently, four
different methods are supported. The malware can either be
distributed via download, by using curl or the Firefox browser, via
an email attachment or via a phishing email with an embedded
malicious office macro that can also be used to drop the malware
onto the system. An example office macro can be seen in Listing 3.

Listing 3. Office macro code snippet.

Next, the malware’s persistence mechanism needs to be chosen.
Again, there are multiple methods supported by ForTrace. For
example, it is possible to use search order hijacking which would
modify existing Windows DLLs with malicious code, running the
malware at boot time or creating a newWindows service, resulting
in a new Registry entry. The method chosen for the following
example is the direct creation of a Registry entry, that contains the
path of the executable, resulting in the malware being executed at
boot time. An example Registry entry extracted and verified using
Registry Explorer can be seen in Fig. 6. Another artifact left by this
persistence mechanism is found in the system’s memory. When a
Windows system is booted, it executes winlogon.exe which in turn
will launch userinit.exe. This process will start any programs
marked for launch at boot time. Any suspicious programs like the
malware used will also be present here and can therefore be looked
up in the Registry by the forensic analyst to find the used persis-
tence mechanism.

Due to the variety of possibilities when executing the malware
synthesis functions of ForTrace, many different types of hard disk
traces can be synthesised. Due to lack of space, we cannot cover
them all in detail here. To exemplary demonstrate the feature, the
Generator mentioned in Section 4.3 is used to simulate a phishing
attack on the supply chain of a company. The example YAML file can
be seen in Listing 4. A simulated attack on the supply chain is
chosen since directly attacking critical infrastructures is becoming
continuously harder since the protection of end systems has been
significantly improved. In this scenario, further code is downloaded
to collect information about the system, saving it in files to be
exfiltrated later. These files are marked as hidden before they are
deleted to make it harder to trace them. The infection is simulated



T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
by generating a phishing mail, with multiple mails with similar
attachments placed in the systems outbox folder, suggesting that
the initial infection spread to further users via email. For certain file
operations, additional traces can be found in the system’s memory
if it is acquired at the right time. For this scenario, this specifically
applies to the download of the additional code as well the upload of
the gathered system information.

Listing 4. Phishing attack simulation.

5.3. ForTrace artifacts

One of the key challenges of all synthetic data sets is to reduce
the number of artifacts created by the data synthesis framework to
a minimum without deleting relevant traces that may be required
for the forensic analysis of the executed scenario. When evaluating
different scenarios, a few different types of artifacts can be
discovered:

� File system artifacts: The framework leaves a few persistent
artifacts, first and foremost the actual installation folder
including example scripts and the entire code base as well as a
link inside the Windows startup/autostart folder to a batch
script used to start the agent. But there are a few more delicate
and not so obvious artifacts, too. Since the ForTrace is installed
on the system, there are traces in the Python installation di-
rectories. Additionally, some artifacts can be found in the Pre-
fetch directory, e.g., if a module uses regedit or psexec.

� Registry artifacts: The most important Registry artifact is
created by the changeUser() function. The Registry key
HKLMnMicrosoftnWindows NTnCurrentVersionnWinlogon reveals
the username and password of the last active user in plain text.

� Event Log artifacts: The persistent Event Log artifacts are
among the most pervasive. As demonstrated in section 5.1 and
Fig. 4, even if the Event Log is disabled, logging and security
auditing occurs. Additionally, if the Event Log is not cleared,
there may be events hinting at the template’s installation and
possibly inconsistent system times if they were changed during
the scenario.

To reduce the created artifacts, two steps have been imple-
mented into ForTrace and usually should be added in each sce-
nario. First, the default user should be deleted at the beginning of
the scenario. Afterwards the guest function initClean() should be
used to remove artifacts within the Event Log and the Prefetch
directory, which were created during the template preparation and
the beginning of the scenario. Second, the guest function cleanUp()
should be called at the end of a scenario. It removes the ForTrace
10
installation directory for every user created during the scenario,
except of the active user which still needs the framework. The
cleanup process can be called in manual mode allowing the dele-
tion of the previously mentioned remaining artifacts. A step-by-
step manual is provided within the framework documentation.
Additionally, there is a list of commands that can assist the user in
manually cleaning unwanted synthesis artifacts using different
tools like CCleaner. Future work on ForTrace will address the
prevention as well as clean up processes of additional synthesis
artifacts in greater detail.

6. Conclusion and future work

Diverse and extensive data sets of high quality are essential for
training both forensic practitioners and machine learning algo-
rithms. This has long been an unsolved problem in the forensics
community, as existing data sets often have significant drawbacks
and manually synthesising data sets is a tedious task. More
recently, attempts have been made to develop initial tools that
reduce the time required for this task and assist in the generation of
forensically relevant data. Since many existing tools are either
focused on specific types of data synthesis, lack the ability to create
traces on multiple layers, or are not publicly available, ForTrace
was developed as an open-source, modular and holistic data syn-
thesis framework for the digital forensic field. ForTrace is able to
synthesise correlated memory, disk and network traces in different
ways, allowing the creation of different data sets through the use of
forensically relevant and realistic scenarios, while simulating the
humanecomputer interaction through the use of a client-server
architecture. The framework already supports a large number of
ways to manipulate a Windows system through diverse anti-
forensic measures and the synthesis of typical malware behav-
iour. It further allows for seamless integration of new functions due
to its modular framework architecture. Meeting the properties
specified at the beginning of this paper, the framework facilitates
forensic trace generation on Windows VMs through a variety of
ready-to-use test scripts or through freely configurable YAML
scripts. To generate suitable background noise, the Generator
component can be used, which automatically generates a realistic
amount of irrelevant background artifacts, such as random web-
sites visited, content downloaded, emails sent and received, thus
distracting the forensic examiner from the actual incriminating
data.

With its modular structure, it is a continuous task to extend the
capabilities of the framework and keep the existing functions up to
date. Possible new features under development include, for
example, the creation of network and file transfer traces through
the development of modules capable of synthesising the use of
modern voice and text communication tools such as Skype,
WhatsApp, Facebook Messenger, Microsoft Teams or Discord. In
addition to the completion of new modules, the expansion of
existing modules is another important task. Besides adding more
mail and browser applications, such as Outlook, Edge and Chrome,
a special focus is on extending the already existing PowerShell
module, as most tasks on Windows can actually be automated via
PowerShell, easily providing a variety of forensically relevant arti-
facts. Whenever we develop new features, we always try to have as
few dependencies on app-specific APIs as possible. Also, only when
it is not possible otherwise, we fall back on GUI automation.
Therefore, PowerShell could also help to develop a generic
approach to interact with many apps in the VMs independently of
app-specific APIs.

Themore functions we add to ForTrace, the more important a
graphical user interface becomes. Therefore, in the near future, we
intend to develop a suitable front-end that will allow the user of the



T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
framework to synthesise forensic images not only on the command
line, but also with a GUI. Another more general extension of the
framework to support multiple guest (and possibly host) operating
systems (e.g., Linux, macOS) is also among the tasks currently un-
der consideration. At the time of writing, there already exists a set
of basic features that can perform similar tasks for Ubuntu guest
VMs as we have shown here for Windows. In addition, we have
started to develop an Android interface for ForTrace in order to
simulate different scenarios on a mobile operating system as well
and thus to simplify the generation of mobile forensic images. This
task is of particular interest, as there is an even greater lack of
available images in the field of mobile forensics as in the field of
disk, memory, or network forensics (Ceballos Delgado et al.,2021;
Gonçalves et al., 2022).

Another very important task is the accurate detection and
reduction of ForTrace-specific synthesis artifacts as mentioned in
Section 5.3. While there are some initial considerations presented
in the paper, this part is not detailed enough and definitely will be
the focus of future work. Therefore, tasks such as exploring ways to
Table 3
Available data synthesis functions in ForTrace related to Windows systems.

Module Available functio

Guest/Agent/VMM (core modules) Create/Close a VM
Establish connect
Start/Shutdown/R
Execute modules
Execute arbitrary
Set OS date and ti
Send keystrokes
Create network tr
Create memory d

File System Copy/Move/Delet
Change directory
Empty recycle bin
Secure delete files

File Transfer Transfer files betw
Transfer files betw
Transfer files betw

User Management Add/Delete/Chang
Logon/logoff of th

PowerShell Install/Uninstall a
Launch/Terminate
Enable/Disable UA
Open Windows E
Search for a keyw
Attach/Detach US
Connect to/Moun
Basic file and fold

Printer Set up (software)
Print files

Anti Forensics Disable/Delete Ev
Disable Hibernati
Disable Page file
Disable/Empty Re
Disable/Delete Pre
Disable/Delete Re
Disable/Delete Th
Disable/Delete MR
Disable/Delete Fil
Clear Jump lists
Set/Manipulate/D

Malware Synthesis Set up environme
Deliver malware (
Use persistence m
Execute various c

Firefox Open/Close applic
Browse to one/mu
Perform downloa
Click elements via
Perform logins (Fa

11
prevent or effectively detect and remove framework-related arti-
facts in an automated and less intrusive way, as is currently done
with calling functions to remove certain traces, are a high priority.
In addition to persistent storage, these considerations must also
take into account main memory and network traces.

In its current state, the ForTrace framework has several
modules that users can combine together to simulate different
scenarios. This enables it to synthesise realistic data at scale, using a
variety of Windows-internal functions and applications, ubiquitous
network protocols, third-party applications, and simulated mal-
ware samples. As a major unique selling point, ForTrace not only
creates persistent disk images, but also simultaneously captures
volatile network traffic and dumps memory data during and after
running a user-scripted scenario.
Appendix A ForTrace data synthesis function overview
ns/user actions

ion to VMs
estart

commands via CLI/Linux Bash (e.g., SSH)
me

affic dump (automated)
ump
e files/folders

/folders (SDelete)
een guest and SMB share
een guest and (S)FTP share
een guest and NFS share
e local accounts
e desired user
program
a program
C
xplorer
ord
B devices
t/Unmount a network drive
er manipulation
network printer

ent Log entries
on file

cycle bin
fetch files
cent files
umbcache
Us/User Assist
e History or Volume Shadow Copy

elete arbitrary Registry keys
nt (Web server, DNS server, C&C server)
via dropper, email, download)
echanisms (search order hijacking, service creation, Registry manipulation)
ommands (e.g., upload, download)
ation
ltiple (specific or random) websites
ds and ”right click save as” operations
ID or xpath
cebook, etc.)

(continued on next page)



Table 3 (continued )

Module Available functions/user actions

Thunderbird Open/Close application
Add IMAP/POP3 accounts
Send/Receive emails w/or w/o attachments
Fill up mailbox file artificially

VeraCrypt Create an encrypted container
Mount/Unmount encrypted container
Transfer data to encrypted container

Pidgin Instant Messaging via IRC, Jabber, Bonjour, etc.

T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
Appendix B Malware synthesis workflow
Fig. 7. General workflow of a m

12
alware synthesis scenario.



T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
Appendix C Exemplary ForTrace scenarios
Table 4
Exemplary forensically relevant scenarios in the scope of ForTrace.

Scenario Attacker Mallory Victim Alice Related forensic artifact sources

Data breach (internal actor) Employee Mallory steals confidential internal
company data from a network drive and copies
it to a USB flash drive.

e Registry, Event Log, File System

Data breach (external actor) External attacker Mallory distributes malicious
code. The malware selects all relevant
documents by file type and transfers them to an
external storage.

Company employee Alice is tricked into
opening an email attachment
containing the malicious code.

Email Database, Event Log, RAM,
Network Traffic

Preservation of evidence Mallory harasses co-workers in private Skype
chat sessions at the office.

Alice files a complaint with her
superiors who order a forensic
examination of the affected computers
and Skype accounts to gather evidence
for possible disciplinary action.

Skype Database, RAM, Network Traffic

Ransomware Mallory sends zipped ransomware attachments
hidden in an Office macro. The ransomware
creates an encryption key and encrypts
specified files by name or extension once it is
executed.

Alice opens the email and extracts the
attachment, executing the ransomware
by opening the Office file. Each time
Alice logs in, she gets amessage that her
files were encrypted and a ransom is to
be payed.

File System, Email Database, RAM
(decryption key), Network Traffic

Phishing Mallory sends emails with an attached HTML
document. The HTML document is a website
that is stored in temporary storage and opened
locally to circumvent potential red flags like
missing certificates.

Alice opens the email and HTML
document. Thewebsites displays a login
page, but when the victim enters her
credentials, they are sent to the attacker
Mallory who uses them to further
propagate the phishing email via Alice’s
email address.

Browser Database, Email Database,
Network Traffic, File System, RAM

Password theft/Trail obfuscation Mallory extracts local passwords with a tool like
mimikatz. If a victim has chosen to save their
credentials after logging into a service, the
password can be read in plain text. These
credentials can then be used by Mallory to log
into the victim’s account and steal data.

Alice connects to a network share and
chooses to save her credentials for
future logins.

Registry (UserAssist, MountedDevices,
etc.), Prefetch/Recent Files, Event Log,
Network Traffic

Drug trafficking Drug dealer Mallory stores a customer list and
supplier contacts on his computer in an
encrypted VeraCrypt container. He uses
DuckDuckGo to find out about hiding
information in other files via steganography.
The details of drug exchanges (e.g., location,
order) are then hidden in a picture. Previously,
however, he inadvertently searched for the
location via Google Maps and stored a
screenshot of the location locally.

e File System, Thumbcaches, Email
Database, Browser database, RAM

Data hiding Mallory owns criminally relevant files and tries
to bypass forensic tools from recognising these
files using for example hash values or contents.
He tries to hide the files using internal file
system structures like slack and reserved areas,
storing the files in encrypted containers, and
deleting some of the files securely.

e Thumbcaches, File System, Registry,
RAM (container content, encryption
keys)

Data prevention Mallory uses the Windows Registry to reduce
traces left on his system. Therefore, he disables
the creation of prominent artifacts like
Thumbcaches and Prefetch files. He then
executes and moves files to an encrypted
container on an external drive. After extracting
the data, he re-enables the previously disabled
services.

e Registry, Jump Lists, Event Log, RAM
References

Abt, S., Baier, H., 2014. Are we missing labels? a study of the availability of ground-
truth in network security research. In: 2014 Third International Workshop on
Building Analysis Datasets and Gathering Experience Returns for Security.
BADGERS), pp. 40e55. https://doi.org/10.1109/BADGERS.2014.11.

Amato, F., Cozzolino, G., Mazzeo, A., Mazzocca, N., 2017. Correlation of digital evi-
dences in forensic investigation through semantic technologies. In: 2017 31st
International Conference on Advanced Information Networking and Applica-
tions Workshops. WAINA), pp. 668e673. https://doi.org/10.1109/WAINA.2017.4.

Carrier, B., 2021. Digital forensics tool testing images. URL: http://dftt.sourceforge.
13
net. (Accessed 12 October 2021).
Ceballos Delgado, A.A., Glisson, W.B., Grispos, G., Choo, K.-K.R., 2021. FADE: A

forensic image generator for android device education. Wiley Interdisciplinary
Reviews: Forensic Science e1432. https://doi.org/10.1002/wfs2.1432.

da/sec, 2021. Biometrics & Internet Security Research Group, hystck. URL. https://
github.com/dasec/hystck. (Accessed 13 October 2021).

Dalins, J., Tyshetskiy, Y., Wilson, C., Carman, M.J., Boudry, D., 2018. Laying founda-
tions for effective machine learning in law enforcement. majura e a labelling
schema for child exploitation materials. Digit. Invest. 26, 40e54. https://doi.org/
10.1016/j.diin.2018.05.004. URL.

DFRWS, 2021. Forensic challenges. URL: https://dfrws.org/forensic-challenges/.
(Accessed 12 October 2021).

https://doi.org/10.1109/BADGERS.2014.11
https://doi.org/10.1109/WAINA.2017.4
http://dftt.sourceforge.net
http://dftt.sourceforge.net
https://doi.org/10.1002/wfs2.1432
https://github.com/dasec/hystck
https://github.com/dasec/hystck
https://doi.org/10.1016/j.diin.2018.05.004
https://doi.org/10.1016/j.diin.2018.05.004
https://dfrws.org/forensic-challenges/


T. G€obel, S. Maltan, J. Türr et al. Forensic Science International: Digital Investigation 40 (2022) 301344
Du, X., 2020. Eviplant. URL: https://github.com/XiaoyuDu/eviplant. (Accessed 13
October 2021).

Du, X., Hargreaves, C., Sheppard, J., Scanlon, M., 2021. TraceGen: User activity
emulation for digital forensic test image generation. Forensic Sci. Int.: Digit.
Invest. 38, 301133. https://doi.org/10.1016/j.fsidi.2021.301133, 2666-2817.
https://www.sciencedirect.com/science/article/pii/S2666281721000317.
Forensic disk image creation, Evidence planting, User emulation, Tool testing
and validation, Forensic education.

Fragg, M., 2014. Forgeosi. URL. https://github.com/maxfragg/ForGeOSI. (Accessed 11
October 2021).

Garfinkel, S., 2007. Forensic Corpora: a Challenge for Forensic Research. Electronic
Evidence Information Center, pp. 1e10.

Garfinkel, S., 2012. Lessons learned writing digital forensics tools and managing a
30tb digital evidence corpus, Digital Investigation. In: the Proceedings of the
Twelfth Annual DFRWS Conference, 9, pp. S80eS89. https://doi.org/10.1016/
j.diin.2012.05.002.

Garfinkel, S., Farrell, P., Roussev, V., Dinolt, G., 2009. Bringing science to digital fo-
rensics with standardized forensic corpora, Digital Investigation. In: the Pro-
ceedings of the Ninth Annual DFRWS Conference, 6, pp. S2eS11. https://doi.org/
10.1016/j.diin.2009.06.016.

G€obel, T., Sch€afer, T., Hachenberger, J., Türr, J., Baier, H., 2020. A novel approach for
generating synthetic datasets for digital forensics. In: Peterson, G., Shenoi, S.
(Eds.), Advances in Digital Forensics XVI. Springer International Publishing,
Cham, pp. 73e93.

Gonçalves, P., Attenberger, A., Baier, H., 2022. Actual data distribution in mobile
devices and the need to obtain realistic mobile forensic corpora. In:
Peterson, G., Shenoi, S. (Eds.), Advances in Digital Forensics XVIII. Springer In-
ternational Publishing.

Grajeda, C., Breitinger, F., Baggili, I., 2017. Availability of datasets for digital forensics
e and what is missing. Digit. Invest. 22, S94eS105. https://doi.org/10.1016/
j.diin.2017.06.004. https://www.sciencedirect.com/science/article/pii/
S1742287617301913.

Hadi, A., 2021. Digital forensic challenge images (datasets). URL: https://www.
ashemery.com/dfir.html. (Accessed 12 October 2021).

Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D., 2018. Maldozer: Automatic
framework for android malware detection using deep learning. Digit. Invest. 24,
S48eS59. https://doi.org/10.1016/j.diin.2018.01.007.

Keighley, J., 2017. Forgen. URL: https://github.com/Jjk422/ForGen. (Accessed 11
October 2021).

Keighley, J., 2021. Forgen - the future of forensic image generation? https://www.
14
heacademy.ac.uk/system/files/downloads/jason_keighley_-_forgen.pdf.
(Accessed 11 October 2021).

Le, Q., Boydell, O., Mac Namee, B., Scanlon, M., 2018. Deep learning at the shallow
end: malware classification for non-domain experts. Digital Investigation 26,
S118eS126. https://doi.org/10.1016/j.diin.2018.04.024.

Moch, C., Freiling, F.C., 2009. The forensic image generator generator (forensig2). In:
2009 Fifth International Conference on IT Security Incident Management and IT
Forensics, pp. 78e93. https://doi.org/10.1109/IMF.2009.8.

Moch, C., Freiling, F.C., 2012. Evaluating the forensic image generator generator. In:
Gladyshev, P., Rogers, M.K. (Eds.), Digital Forensics and Cyber Crime. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 238e252.

Ngejane, C., Eloff, J., Sefara, T., Marivate, V., 2021. Digital forensics supported by
machine learning for the detection of online sexual predatory chats. Forensic
Sci. Int.: Digit. Invest. 36, 301109. https://doi.org/10.1016/j.fsidi.2021.301109.
URL https://www.sciencedirect.com/science/article/pii/S2666281721000032.

NIST - National Institute of Standards and Technology, Computer Forensic Reference
Data Sets (CFReDS), 2021. URL: https://www.cfreds.nist.gov. (Accessed 10
October 2021).

Park, J., 2018a. Trede and vmpop: cultivating multi-purpose datasets for digital
forensics e a Windows registry corpus as an example. Digit. Invest. 26, 3e18.
https://doi.org/10.1016/j.diin.2018.04.025.

Park, J., 2018b. pyvmpop. URL: https://github.com/jungheum/pyvmpop. (Accessed
11 October 2021).

Qadir, S., Noor, B., 2021. Applications of machine learning in digital forensics. In:
2021 International Conference on Digital Futures and Transformative Tech-
nologies. ICoDT2), pp. 1e8. https://doi.org/10.1109/ICoDT252288.2021.9441543.

Scanlon, M., Du, X., Lillis, D., 2017. Eviplant: An efficient digital forensic challenge
creation, manipulation and distribution solution. Digit. Invest. 20, S29eS36.
DFRWS 2017 Europe. https://doi.org/10.1016/j.diin.2017.01.010.

Visti, H., 2015. Forge - forensic test image generator v2.1. URL. https://github.com/
hannuvisti/forge. (Accessed 13 October 2021).

Visti, H., Tohill, S., Douglas, P., 2015. Automatic creation of computer forensic test
images. In: Garain, U., Shafait, F. (Eds.), Computational Forensics. Springer In-
ternational Publishing, Cham, pp. 163e175.

Woods, K., Lee, C.A., Garfinkel, S., Dittrich, D., Russell, A., Kearton, K., 2011. Creating
realistic corpora for security and forensic education. In: Proceedings of ADFSL
Conference on Digital Forensics. Security and Law, pp. 123e134.

Yannikos, Y., Steinebach, M., Graner, L., Winter, C., 2014. Data corpora for digital
forensics education and research. In: Peterson, G., Shenoi, S. (Eds.), Advances in
Digital Forensics X. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 309e325.

https://github.com/XiaoyuDu/eviplant
https://doi.org/10.1016/j.fsidi.2021.301133
https://www.sciencedirect.com/science/article/pii/S2666281721000317
https://github.com/maxfragg/ForGeOSI
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref10
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref10
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref10
https://doi.org/10.1016/j.diin.2012.05.002
https://doi.org/10.1016/j.diin.2012.05.002
https://doi.org/10.1016/j.diin.2009.06.016
https://doi.org/10.1016/j.diin.2009.06.016
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref13
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref13
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref13
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref13
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref13
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref13
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref13
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref14
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref14
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref14
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref14
https://doi.org/10.1016/j.diin.2017.06.004
https://doi.org/10.1016/j.diin.2017.06.004
https://www.sciencedirect.com/science/article/pii/S1742287617301913
https://www.sciencedirect.com/science/article/pii/S1742287617301913
https://www.ashemery.com/dfir.html
https://www.ashemery.com/dfir.html
https://doi.org/10.1016/j.diin.2018.01.007
https://github.com/Jjk422/ForGen
https://www.heacademy.ac.uk/system/files/downloads/jason_keighley_-_forgen.pdf
https://www.heacademy.ac.uk/system/files/downloads/jason_keighley_-_forgen.pdf
https://doi.org/10.1016/j.diin.2018.04.024
https://doi.org/10.1109/IMF.2009.8
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref22
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref22
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref22
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref22
https://doi.org/10.1016/j.fsidi.2021.301109
https://www.sciencedirect.com/science/article/pii/S2666281721000032
https://www.cfreds.nist.gov
https://doi.org/10.1016/j.diin.2018.04.025
https://github.com/jungheum/pyvmpop
https://doi.org/10.1109/ICoDT252288.2021.9441543
https://doi.org/10.1016/j.diin.2017.01.010
https://github.com/hannuvisti/forge
https://github.com/hannuvisti/forge
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref31
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref31
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref31
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref31
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref32
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref32
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref32
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref32
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref33
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref33
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref33
http://refhub.elsevier.com/S2666-2817(22)00013-0/sref33

	ForTrace - A holistic forensic data set synthesis framework
	1. Introduction
	2. Related work
	2.1. Manually generated images
	2.2. Automatic forensic image generators

	3. Properties of a holistic synthesis framework
	4. ForTrace structure and functionality
	4.1. Basic framework functionality
	4.2. Framework architecture
	4.3. Data synthesis features
	4.4. Report of relevant actions performed

	5. Validation of the ForTrace framework
	5.1. Validation of Windows artifacts
	5.2. Malware synthesis
	5.3. ForTrace artifacts

	6. Conclusion and future work
	Appendix A ForTrace data synthesis function overview
	Appendix B Malware synthesis workflow
	Appendix C Exemplary ForTrace scenarios
	References


