
Chapter 2

REALISTIC AND CONFIGURABLE
SYNTHESIS OF MALWARE TRACES
IN WINDOWS SYSTEMS

Martin Lukner, Thomas Göbel and Harald Baier

Abstract Malware constitutes a long-term challenge to the operation of contem-
porary information technology systems. A tremendous amount of re-
alistic and current training data is necessary in order to train digital
forensic professionals on the use of forensic tools and to update their
skills. Unfortunately, very limited training data images are available,
especially images of recent malware, for reasons such as privacy, compet-
itive advantage, intellectual property rights and secrecy. A promising
solution is to provide recent, realistic corpora produced by dataset syn-
thesis frameworks. However, none of the publicly-available frameworks
currently enables the creation of realistic malware traces in a customiz-
able manner, where the synthesis of relevant traces can be configured
to meet individual needs.

This chapter presents a concept, implementation and validation of
a synthesis framework that generates malware traces for Windows op-
erating systems. The framework is able to generate coherent malware
traces at three levels, random-access memory level, network level and
hard drive level. A typical malware infection with data exfiltration is
demonstrated as a proof of concept.

Keywords: Forensic datasets, data synthesis framework, malware traces, hystck

1. Introduction
Contemporary digital forensic investigations are encountering large

amounts of increasingly complex traces that have to be analyzed [18].
Meanwhile, attackers are using sophisticated techniques to obfuscate
their traces. As a result, it is becoming increasing necessary to employ
tools that automate portions of digital forensic investigations. Simul-

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
G. Peterson and S. Shenoi (Eds.): DigitalForensics 2022, IFIP AICT 653, pp. 21–44, 2022.
https://doi.org/10.1007/978-3-031-10078-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10078-9_2&domain=pdf

22 ADVANCES IN DIGITAL FORENSICS XVIII

taneously, digital forensic professionals need to be trained to deal with
complex traces [19].

Developing a digital forensic tool requires considerable effort. In ad-
dition to providing the required capabilities, the tool and the results it
yields must be accepted in judicial proceedings. This requires the tool
to meet certain criteria [5]. An important criterion is testing, which en-
sures that the tool has been evaluated thoroughly. This requires a large
amount of real-world data with adequate coverage.

Unfortunately, labeled data sets are rare in the cyber security domain
as well as in specialized areas such as network security, biometrics and
digital forensics [1, 11, 13]. A study by Abt and Baier [1] reveals that
70% of the published papers in network security rely on self-compiled
datasets and only 10% of the datasets are released to the public.

A key problem with publicly-available datasets is that they are often
constructed for special research studies and may not adequately repre-
sent real-world scenarios. Another problem is the paucity of datasets.
Malware analysis is an important task in contemporary digital forensic
investigations, but publicly-available corpora containing traces of exe-
cuted malware are exceedingly rare [13]. This situation is primarily due
to reasons such as privacy, competitive advantage, intellectual property
rights and secrecy. What is needed is a configurable tool that can au-
tomatically generate malware-related forensic images for forensic tool
testing as well as for training forensic professionals.

This chapter presents a concept, implementation and validation of
a synthesis framework that generates malware traces for the Microsoft
Windows operating system. The concept and implementation leverage
the hystck framework [12], which is extended by a malware generation
module. The extension is able to imitate characteristics of recent mal-
ware. Unlike current synthesis frameworks, it provides coherent digital
forensic traces at three levels, random-access memory (RAM) images,
network dumps and persistent hard drive images. The source code of
the malware synthesis extension is available at GitHub [3].

The synthesis framework focuses on Windows-based malware because
of the large global footprint of computing systems running Microsoft
Windows operating systems. According to Statista [30], roughly 84% of
the malware released during the first quarter of 2020 affected Windows
operating systems. The framework relies on a client-server malware
infrastructure model. It considers different types of communications
between a remote access tool and command-and-control server. Config-
uration files are employed to create various, easily adaptable real-world
scenarios with the respective ground truths. The validation reveals that
the implementation is successfully integrated in the hystck framework

Lukner, Göbel & Baier 23

Table 1. Overview of related work on forensic data synthesis.

Tool or Authors Year Type Active Tool Code Image Types
Available and Traces

Carrier [6] 2010 Man No NA R,P
Hadi [14] 2011 Man No NA P,M
Garfinkel et al. [11] 2009-14 Man No NA P
NIST [26] ≤2019 Man Yes NA R,N,P,M
Honeynet [31] 2010-15 Man No NA N,P,M
ID2T [8] 2015 Syn No Yes N,M
FLAME [4] 2008 Syn No No N,M
Forensic Image 2011 Syn No No P
Generator Generator [22]
Forensic Test 2015 Syn No Yes P
Image Generator [33]
EviPlant [29] 2017 Syn No Yes P
TraceGen [10] 2021 Syn Yes No P,N
hystck [12] 2020 Syn Yes Yes R,N,P

and that the configured traces exist at the RAM, network and hard drive
levels to provide coherent pictures of malware infections.

2. Related Work
This section discusses related work in the context of dataset gener-

ation and shows that no publicly-available, configurable data synthesis
framework exists for generating forensically-relevant images for malware
investigations.

Grajeda et al. [13] have discussed the availability of datasets for
digital forensics and what is missing. A key gap exists with regard
to framework-generated datasets where the framework code is publicly
available and holistic views of the datasets are possible. Of particular in-
terest are datasets that provide volatile, network and persistent images,
and forensically-relevant traces of malware activity.

Table 1 provides an overview of related work on forensic data synthe-
sis. The first column lists the tool or authors (researchers), the second
column indicates when the tool or image was last updated and the third
column specifies if the forensic image was created manually (Man) or if
the work relates to a synthesis tool (Syn). The active and code available
columns indicate current support of the tool or image and code availabil-
ity, respectively. The sixth (last column) deals with the image type and
malware traces. A generated image type is designated by R for RAM,

24 ADVANCES IN DIGITAL FORENSICS XVIII

N for network and P for persistent. An M designates if malware traces
are present in the image or may be generated.

Manual Image Generation. Manually-generated forensic images are
commonly used for digital forensic practice and training purposes. Such
forensic images have been created by Carrier [6], Hadi [14], Garfinkel et
al. [11] and NIST [26]. If a forensic image is created manually, it can be
assumed that all the traces it contains are intended.

However, manually-generated forensic images are difficult to mod-
ify because the entire images have to be created anew. As a result,
there are relatively few manually-generated images. Also, some foren-
sic images, notably the images created by Garfinkel et al. [9, 11], are
subject to access restrictions imposed by U.S. law [9, 35]. Additionally,
manually-generated images quickly become outdated because they use
old hardware, operating systems and/or versions of installed software.

The static nature of manually-generated forensic images poses another
problem. When images are used for forensic training purposes or in
forensic challenge competitions, the solutions are disseminated over the
Internet, which negatively impacts learning and training. Techniques
are available to address this problem [34]. However, it is much easier to
automatically create individual images based on parameters that are set
in a configuration file before the data synthesis process and determine
the traces in the resulting forensic image.

Network Traffic Generation. Traffic generators produce network
dumps for digital forensic investigations. The ID2T framework [8] en-
ables the creation of labeled datasets for testing intrusion detection sys-
tems. Packet captures of arbitrary networks are collected and mali-
cious traffic is injected into them to simulate network attacks such as
distributed-denial-of-service attacks. ID2T also supports modern proto-
cols such as IPv6.

FLAME [4] works in a manner similar to ID2T, but it generates net-
work flows. The network flows contain basic information about grouped
packets in flows specified in the NetFlow format and IPFIX standard.

Drive Image Generation. Drive image generators enable the cre-
ation of forensic images of persistent storage devices such as hard drives,
solid-state drives and USB drives. The Forensic Image Generator Gen-
erator [22, 23] demonstrates the feasibility of developing generators of
forensic images for students. The input to the generator comprises
scripts written by an instructor and the output comprises a filesystem
image and an automatically-generated report in human-readable form

Lukner, Göbel & Baier 25

that defines the ground truth. The Forensic Image Generator Generator
creates traces in a virtual machine (VM), enabling the system settings
to be modified as required. However, the framework is out-of-date and
is no longer maintained.

The Forensic Test Image Generator (ForGe) [33], unlike the Forensic
Image Generator Generator, provides a user interface. Input instructions
are provided in the form of database entries and the output contains
drive images and information sheets. Although the tool is available at
GitHub [32], it has not been updated since 2015 and does not provide
network logs or RAM dumps.

The EviPlant framework [29] is a more recent image generator. The
framework makes use of a base drive image, which can be downloaded.
Additionally, challenges or traces are available in the form of evidence
packages. In order to obtain a forensically-relevant drive image, a cho-
sen evidence package has to be injected into the base image. However,
injecting consistent traces is very difficult and the manual work involved
in creating traces is barely reduced.

Multilevel Image Generation. Multilevel image generators provide
at least two of the three levels of images, volatile, network and persistent
images. TraceGen [10] is a recent framework that captures network
traces as well as hard drive traces. However, the approach is currently
published as a proof of concept, meaning that no code is available. To
combine the advantages of manual and automatic trace generation, APIs
such as pywinauto [20] are used to simulate user interactions with the
graphical user interface. For example, setting a registry key via the
interface generates different traces than when setting a registry key via
a command line. This also solves the problem of evidence packages in
the EviPlant framework. It appears that all available scenarios are in
the form of Python scripts or all individual actions are in lists. This does
not make it very user-friendly, especially for users with limited technical
experience.

The hystck [12] framework can create traces in RAM, network logs
and hard drive images. This is done automatically using Python scripts
or via YAML configuration files. Automated synthesis makes it possi-
ble to create a variety of traces with little effort. The traces can be
distributed efficiently in template and differential images.

Summary. Unfortunately, existing data synthesis frameworks support
the creation of limited scenarios. Typical malware behavior may be
replicated by certain commands, but important aspects such as infec-
tion vectors or RAM artifacts and important events, such as Syslog

26 ADVANCES IN DIGITAL FORENSICS XVIII

events, are missing. Frameworks that mimic malware techniques, such
as MITRE’s Caldera [21], have different goals than the synthesis frame-
works discussed above. For example, Caldera can be used for red or
blue team operations as well as for testing servers or security teams
whereas frameworks such as hystck generate traces in template virtual
machines in large quantities in an automated manner. Table 1 shows
that no framework exists that combines the advantages of automated
synthesis and malware trace generation. Moreover, the manually-created
datasets containing RAM dumps, network captures and drive images are
not coherent. In contrast, hystck is the only synthesis framework that
provides coherent multilevel traces. This is where the work described
in this chapter begins and it ultimately enables the creation of complex
malware scenarios that are not generated by any other framework.

3. Forensic Dataset Synthesis Framework
Instead of creating a new framework for synthesizing malware traces

from scratch, it was decided to extend hystck, the existing framework
with the best fit. The extended hystck framework must create digital
forensic traces by simulating natural human-computer interactions. The
generated traces are intended to be as indistinguishable as possible from
real-world RAM snapshots, network traffic and hard drive images.

In order to have good control over the generated traces, hystck em-
ploys a virtualization solution that leverages KVM and QEMU. The ac-
tual implementation makes use of Python because a platform-independ-
ent programming language enables the creation of traces for different
guest operating systems.

The hystck framework has a client-server architecture (Figure 1).
The server is responsible for controlling the client, which runs in the
background and controls the guest’s graphical user interface via an in-
teraction manager. To prevent control traffic and forensically-relevant
Internet traffic from mixing, the client component communicates using
two network cards, an Internet card and a local network card. The lo-
cal network is only used for control traffic between the client and server.
Packets are captured at the Internet network interface using the tcpdump
tool and stored in a PCAP file.

A template file is used as a base for each image that is created. The
Linux, Windows 7 and Windows 10 operating systems are supported at
this time. Important settings, such as the number of virtual machines
to be created, template file names, IP addresses and actions to be taken,
are stored in a text-based configuration file and are easily adapted. The
hystck generator component (Figure 2) facilitates the creation of large

Lukner, Göbel & Baier 27

Figure 1. hystck architecture [12].

Figure 2. Generator component workflow [12].

amounts of traces using an easy-to-configure YAML file, eliminating the
need to code complex Python scripts.

The actual creation of traces is accomplished by cloning the template
virtual machine and establishing a connection with the guest virtual
machine. Following this, sniffers are started on the corresponding inter-
faces and the desired actions are carried out by the agents on the virtual
machines. Finally, the memory content is captured, the tcpdump tool is
terminated and the captured contents are made available as RAM dumps
and PCAP files. The PCAP files contain the forensically-relevant traces

28 ADVANCES IN DIGITAL FORENSICS XVIII

that should be explicitly generated as well as additional network traffic
(e.g., realistic background noise corresponding to network communica-
tions of standard operating system services such as updates). In addition
to creating PCAP files, hystck can create persistent drive images with
the drive image generator. Several applications can be emulated and
updated constantly due to the modular architecture. The applications
are controlled via simple guest user interaction models. This makes it
almost impossible to distinguish a generated image from an image cre-
ated by real user interactions. Additional services such as email and file
services required by the data synthesis process are provided by separate
service virtual machines.

At the end of the data synthesis process, all the changes made, whether
malicious or benign, are summarized by the reporting component. These
are compiled into an XML-based report file that informs the user about
all the generated traces.

4. Malware Dataset Synthesis
This section describes the approach for creating a forensic image gen-

eration framework that provides malware traces at the volatile (RAM),
network and persistent (hard drive) levels.

4.1 Requirements
The malware dataset synthesis approach relies on the hystck frame-

work because it is the only currently-maintained framework that pub-
lishes its code, is configurable and enables the generation of traces at the
three desired levels. The requirements are defined to enable the develop-
ment of realistic, complex scenarios. The hystck extension should make
it possible to create malware traces in RAM, network traffic and on the
hard drive. During real malware analysis, a digital forensic professional
is usually confronted with traces such as command-and-control commu-
nications patterns, various persistence mechanisms and other artifacts
created by malware. A client-server architecture is required to generate
all these types of artifacts.

In particular, the proof-of-concept implementation uses the Windows
registry, the creation of a service and dynamic link library search-order
hijacking for persistence mechanisms. From an analyst’s point of view,
the Windows registry has the advantage of occurring twice, volatile in
the RAM dump and persistently on the hard drive. To simulate as
many different scenarios as possible, several protocols that are typically
encountered during malware infections are employed. One is HTTP,
which enables the transfer of large files. A second protocol is raw TCP

Lukner, Göbel & Baier 29

Configuration
File

Malware Service VM

Host Running
hystck

VM with Guest

DNS

HTTP

Malware
ClientEncrypted

Figure 3. High-level architecture of the hystck malware synthesis extension.

transfer. A third is DNS, which is used less frequently by malware, but
offers advantages in networks with firewalls because DNS traffic is often
not filtered and is essential for a network to function. To create differ-
ent levels of difficulty during forensic analyses, various encoding schemes
and encryption methods are implemented. Indeed, the algorithms com-
monly used by malware authors are employed; these include Base64 as
an encoding scheme and RC4 and AES for encryption. In order to focus
forensic analysis on the various traces left by the malware as well as to
realize different attack vectors, the client component must be delivered
to the target system using different droppers in different ways.

4.2 Framework Architecture
Figure 3 shows the high-level architecture of the hystck malware syn-

thesis extension. Several components are required to implement the de-
sired functionality. The host needs a running instance of hystck. In
order to use the malware synthesis component, the framework extension

30 ADVANCES IN DIGITAL FORENSICS XVIII

requires a server component and a client component. Since the malware
service has to be implemented in C++ to use typical Windows libraries,
it is necessary to integrate a second Windows service virtual machine
(malware service VM), which serves as a command-and-control server,
in addition to the existing Linux service virtual machine. The malware
service virtual machine can be configured dynamically, which simplifies
the integration of new scenarios. Additionally, the guest virtual ma-
chines of hystck are augmented with a corresponding malware client
component. Communications between the client and server components
employ the network protocols mentioned above.

Droppers and Delivery. Malware can be delivered by the client com-
ponent in multiple ways. In the proof-of-concept implementation, a
Microsoft Office macro is used as a dropper that downloads the entire
malware. The dropper can be used as a normal variant and as a variant
with special properties for bypassing antivirus software. To pass mal-
ware checks unhindered, VBA-stomping is employed, which exploits the
undocumented property of VBA macros whereby only contained p-code
is executed instead of the VBA macro code [7, 15, 16]. To create ap-
propriate Microsoft Office documents, the EvilClippy tool available at
GitHub [27] can be used. As an infection vector, the framework supports
the delivery of malware in an automated manner via browser download,
automated email delivery and automated download via the command
line using curl.

Configurable Forensic Scenario Synthesis. In order to create as
many different malware scenarios as possible and prevent digital foren-
sic professionals from attaching importance to unimportant things, the
server component for malware synthesis is generally first configured at
startup using a JSON-like configuration file that is specific to each sce-
nario. The advantage of a dynamically-configurable server component
is also evident when, for example, multiple forensic images must be gen-
erated for machine learning algorithms. The configuration file enables a
framework user to specify in advance exactly which commands should
be executed during data synthesis. After the malware is launched on
the target system, it gradually requests the commands to be executed.

Figure 4 shows the configurable malware scenario synthesis workflow.
After all the commands in the configuration file have been executed, a
special command is sent that finally terminates the malware on the vic-
tim machine. After the synthesis process, the intended traces should be
present in the generated memory and hard drive images for subsequent
forensic analysis. In addition, all the network traffic between the client

Lukner, Göbel & Baier 31

Figure 4. Configurable malware scenario synthesis workflow.

and server is stored in the PCAP files that are automatically generated
by hystck.

32 ADVANCES IN DIGITAL FORENSICS XVIII

Table 2. Malware synthesis commands.

Command Explanation

Nothing Does nothing and exists only for testing purposes
Execute Executes arbitrary commands via the Microsoft

Windows command line
Download Downloads a file from the server to the client
Upload Sends an arbitrary file from the client to the server
Hollow Starts a new process via process hollowing
Inject Loads a dynamic link library by injecting code into

a running process
Persistence Registry Sets up a persistence mechanism by creating a

registry key
Persistence Service Achieves persistence by creating a service
Change Interval Changes the query interval for new commands
Persistence DLL Creates a persistence mechanism by dynamic link

library search-order hijacking

The proof-of-concept implementation has adequate commands for typ-
ical malware behavior as well as for leaving the corresponding traces in
the memory and drive images. Table 2 describes the commands that are
currently implemented for malware synthesis. In the future, new com-
mands will be introduced to increase the functionality of the malware
component.

Additional traces are created by droppers depending on the exact sce-
nario configuration. For example, it is possible to download the main
malware component at one time via a Microsoft Office macro or to down-
load malware in multiple stages and then launch it by process hollowing.
Depending on the configuration files, additional traces can be created in
user accounts (e.g., user email accounts) as well as in the RAM and hard
drive images during synthesis.

Communications and Encryption. Since a key requirement for the
client and server components is to support multiple protocol types, the
proof-of-concept implementation supports Base64 encoding and RC4
and AES encryption implemented via Microsoft’s CryptoAPI in addition
to the plaintext mode. The different protocol types enable a framework
user to map different levels of difficulty to a scenario that would become
apparent during subsequent forensic analysis.

The communications include client requests for commands, server
commands in response and client notifications of command execution
results. All encoding and encryption types can be used via HTTP as

Lukner, Göbel & Baier 33

Encryption
Mode

Command
Type | Arguments |

Reply
Type |

Reply
Address

1 Byte 1 Byte 1 Byte
Varying Number

of Bytes
Varying Number

of Bytes

Encrypted

Figure 5. Malware control command structure.

well as DNS. In the case of HTTP, the initial request is made by a GET
request; all subsequent requests are made by POST requests where the
POST data contains the results. Communications via DNS use TXT
records and domain names. The DNS server is implemented to respond
to each request strictly according to the configuration file. When the
client makes a request, a corresponding DNS response is created that
contains a TXT record with the next command. The message about the
execution status is specified by the domain name in the next request.
Due to the protocol limitations, it may be necessary to append multiple
TXT records [24]. In any case, regardless of the chosen protocol, all the
commands have the form shown in Figure 5.

A separate protocol and encryption type can be chosen for each com-
mand. For example, it is possible to retrieve the first command via
HTTP in plaintext and the second command Base64-encoded via DNS.
In the case of HTTP, files for the upload and download commands are
transferred via POST requests. In the case of DNS, a requested file is
opened on the server side via the configuration file. It is then trans-
ferred to the client via TXT records. Again, the limitations of the DNS
protocol must be considered, so it may be necessary to send more than
one request per file. If a file is to be transferred from the client to the
server, even more requests are necessary. The file is transferred in the
requested domain name.

To avoid invalid characters, the HTTP and DNS protocols transfer
files exclusively using Base64 encoding. This limits file uploads via DNS
to about 40 bytes per request. However, normal Base64 is not used to
avoid invalid characters. Since domain names do not support “=” and
multiple dots, no trailing characters are introduced for padding purposes
in an encoding; instead, it is adapted to the length during decoding. For
the same reason, all the data encrypted using RC4 or AES is encoded
with the same special Base64 variant.

Static keys exist for AES and DNS communications. Depending on
the chosen configuration, the key can be extracted during subsequent
forensic analysis from the executable located in the RAM dump, from
the PCAP file or from the hard drive.

34 ADVANCES IN DIGITAL FORENSICS XVIII

Notification and Validation. Notification of success or failure is
done via POST data for HTTP and requested domain for DNS. In the
case of HTTP, only the string success or failed is sent. In the case
of DNS, a simple request is made to SUCCESS.com or FAILED.com. The
success or failure message is then output via stdout so that the user of
the synthesis framework is informed about the status of the generated
image. Furthermore, the hystck reporting function is used to inform
the user of the synthesis framework about all the automated user actions
performed and, thus, about the underlying ground truth in the output
images.

5. Malware Synthesis Module Integration
The hystck framework makes it possible to create scenarios via test

scripts and via its generator component [12]. Test scripts have the ad-
vantage that they are precisely configurable as Python scripts and can,
therefore, also generate arbitrary scenarios that are not covered by the
generator component. The generator, on the other hand, enables scenar-
ios to be configured using YAML files, which allows less technical users
to create scenarios. The malware synthesis extension supports image
generation using test scripts and the generator component.

5.1 Data Synthesis Using Test Scripts
In order not to block the main thread and to enable data synthe-

sis, the login to the service virtual machine and the start of the server
component should be executed in separate threads. The server compo-
nent can then be started with the configuration file via SSH as shown in
Figure 6. For simplicity, the configuration file is already present in the
server in the example workflow. However, it is also possible to trans-
fer the configuration file to the server via the SSH connection before
malware synthesis starts. The thread in which the server component is
started does not end until the server component is terminated.

To better understand the workflow in Figure 6, it is necessary to clar-
ify selected persistence mechanism search-order hijacking. In the passed
configuration file, the malware is requested to download a dynamic link
library suitable for persistence and to set up a persistence mechanism in
the client. The command-and-control server terminates automatically,
which ends the thread. The main thread waits for this thread to ter-
minate and then shuts down the virtual machine to test the persistence
mechanism. Before restarting the virtual machine, the server component
of the malware is restarted in a thread using the same function. This
time, however, there is a different configuration file with different control

Lukner, Göbel & Baier 35

Figure 6. Data synthesis workflow using test scripts.

36 ADVANCES IN DIGITAL FORENSICS XVIII

commands. Thus, if the malware is started again on the client due to
the persistence mechanism, it connects to the server and executes the
commands stored in the configuration file and terminates.

5.2 Data Synthesis Using the Generator
Aside from the test scripts that have to be programmed manually,

the generator is the most important component of the hystck frame-
work. The generator enables a user with limited technical skills to easily
configure the data synthesis process using a YAML file, automatically
generating a large number of traces rapidly and with relatively little
effort. This is only partially the case with test scripts because they
sometimes require several hundred lines of Python code to achieve the
same functionality. In addition to the actual commands executed on
the client, the YAML configuration file specifies information such as the
service virtual machine (command-and-control server) address, email to
be synthesized (e.g., for a phishing scenario), exact download paths and
ports.

An important point has to be considered to integrate malware func-
tionality in the generator. During the normal execution of the generator,
the order of actions to be performed is shuffled randomly before execu-
tion, so it is not known which functions have completed and which have
not. While this is not a problem when accessing a large number of web-
sites, it can be problematic to obtain the correct malware component
functionality. For example, before each scenario, it is necessary to en-
sure that malware has been downloaded or that a persistence mechanism
has been created. Otherwise, an attempt could be made to execute the
malware before it is delivered to the target system. The configuration
settings passed to the YAML file are, therefore, only executed on restart
if a persistence mechanism was previously set up or after the malware
was downloaded. Figure 7 shows the data synthesis workflow using the
generator.

The configuration files passed in a YAML file look very similar to
the configuration files of the server component. Only special commands
are added, for example, to trigger a restart. Within the YAML file,
new collection types for the configuration files and application types are
added for the malware component. This makes it possible to configure
various parameters such as server IP addresses and download paths.
Figure 8 shows an example YAML file.

Lukner, Göbel & Baier 37

Figure 7. Data synthesis workflow using the generator.

6. Generated Dataset Validation
The dataset generated via data synthesis was validated by examining

volatile RAM dumps, PCAP network traffic files and persistent drive im-
ages. Multiple evaluation phases were performed that focused on where
and how traces could be found during a forensic investigation. This
proved the existence of traces after data synthesis and, thus, validated
the correct functioning of the proof-of-concept implementation.

RAM Dump. To find relevant traces in a RAM dump, it is necessary
to first locate the malicious process. The traces differ depending on

38 ADVANCES IN DIGITAL FORENSICS XVIII

1. name: hystck example

2. author: Lukner, Goebel, Baier

3. collections:

4. c-malware-1:

5. type: malware

6. commands: /data/hystck/examples/generator/

collections/malware1.txt

7. email: /data/hystck/examples/data/

email_hay.xml

8. applications:

9. malware-1:

10. type: malware

11. service-vm: 192.168.122.219

12. name: MalwareBot.exe

13. dnsServer: 192.168.122.219

14. webServer: 192.168.122.219

15. webPort: 7777

16. service-port: 8080

17. beacon: 3

18. path: C:\users\hystck\Desktop

19. hay:

20. needles:

21. h-malware-2:

22. application: malware-1

23. collection: c-malware-1

Figure 8. Example YAML file.

when the RAM dump was created and which commands were executed.
It is important to record handles and open network connections that are
only valid during command execution. It can be difficult to acquire data
from RAM at exactly the right time. Therefore, the query interval was
extended and an automated RAM capture feature was incorporated in
hystck.

Depending on the executed commands, a suspicious process can be de-
tected by various characteristics in a RAM dump, such as open network
connections and the process list. Depending on the chosen configura-
tion of the malware synthesizer, certain anomalies may occur. First, an
investigation could determine that an unknown process was started by
dumping the process list regardless of the process name. Second, the
process may appear in the open network connections linked to a UDP
connection and to a TCP connection. A UDP connection could be suspi-
cious because it would not belong to the DNS server in the system and a
TCP connection could look suspicious because of the port used. Third,
strings such as http://192.168.122.219:8080/MalwareBot.exe that
provide information about the process origin would be discovered. After

Lukner, Göbel & Baier 39

a malicious process is found, it can be extracted from memory using the
Volatility tool and analyzed to discover its true functionality. By reverse
engineering the executable, even the keys used in communications could
be recovered. Fourth, traces of persistence mechanisms can be found in
the process list based on the associated parent processes and the paths
of the loaded dynamic link libraries of the processes.

Since malware can execute arbitrary code using cmd commands and
download additional code and files, any number of additional traces can
be created in RAM during data synthesis. If the malware performs op-
erations such as uploads and downloads, then it is possible that handles
to the corresponding files would still be open in memory. This infor-
mation enables conclusions to be drawn about the exfiltrated data and
downloaded malware code.

When the Inject command is executed, memory is allocated in the
target process and the name of the dynamic link library to be loaded
is written to the memory area. With the help of the malfind plugin,
which recognizes such memory areas based on page permissions, the
dynamic link library injection could be found. Another code injection
technique that is not detected by malfind is process hollowing, when a
process is started in the suspended mode and its executable is replaced
by another executable. However, this can be detected using another
Volatility plugin that is available at GitHub [25].

Network Traffic. Depending on the scenario and encoding or en-
cryption method used, network traffic can be easy or rather difficult to
analyze. The traces that can be extracted from network traffic include
exfiltrated data in addition to the control commands sent. An infection
can be detected in several ways, including a running malicious process
in RAM, network anomalies or traces on a hard drive.

Suspicious DNS behavior in the proof-of-concept implementation may
involve a large number of DNS requests with many TXT records occur-
ring during a file transfer, especially when the requests are directed to a
server that is not set as the DNS server for the system. The associated IP
address would be of considerable interest during further analysis. De-
pending on the selected configuration, the entire malicious executable
could be extracted and analyzed or at least the amount of exfiltrated
data could be estimated from the capture. By choosing static keys,
it would be possible to recover the RC4 and AES encryption keys by
reverse engineering and thus decrypt the transmitted commands and
identify the exfiltrated data.

40 ADVANCES IN DIGITAL FORENSICS XVIII

Persistent Drive Image. Depending on the chosen malware settings,
malware would leave various traces in the filesystem, browser download
history and user email program. The ability to execute arbitrary code
using hystck functions enables a large number of traces to be created.
Examples include hiding traces by setting file attributes or generating
arbitrary email for synthesizing a supply chain attack. Furthermore, per-
sistence mechanisms could create additional traces. These traces would
be found in the filesystem, for example, when using dynamic link library
search-order hijacking or in the Windows Registry (e.g., a key under
HKCU\Software\Microsoft\Windows\CurrentVersion\Run) or due to
execution via an autostart service.

Reporting. The malware components on the client and server output
information via stdout for each executed command. In the case of the
malware client, this is more for testing purposes because the output is
not sent to the server; instead, the server is only informed whether or
not the action was successful. This avoids additional network traffic,
which should be kept to a minimum in the case of malware.

During automated execution, the server output is available to a frame-
work user on the console during runtime and in a hystck report. This
includes information about the success or failure of the last operation,
beacon data and the next command sent to the malware. It would not
be possible to validate the traces retroactively because implementing a
command to execute arbitrary cmd commands would produce almost any
number of traces. As a result, it would not be possible to validate the
traces on the fly. However, in most cases, it can be assumed that the de-
sired traces are present when the server receives feedback that execution
was successful.

7. Conclusions
The extension of the hystck data synthesis framework developed in

this research generates coherent malware traces for Windows operating
systems at the RAM, network and hard drive levels. This enables the
creation of realistic corpora that are needed to train digital forensic
professionals on the use of forensic tools and to update their skills.

The new malware module integrated in hystck works with the genera-
tor component as well as test scripts. The new module makes it possible
to create targeted malware scenarios as well as combine new malware fea-
tures with existing hystck components. The server and client malware
components are configured using JSON-like configuration files that con-
tain large sets of implemented commands that generate malware traces.

Lukner, Göbel & Baier 41

The extended hystck data synthesis framework was validated using
test scenarios for which coherent malware traces were created in RAM
dumps, PCAP files and hard drive images. The validation reveals that
the malware module is successfully integrated in the hystck framework
and that configured traces exist at the RAM, network and hard drive
levels to provide coherent pictures of malware infections. The framework
incorporates a report module that records all the actions performed dur-
ing data synthesis and, thus, all the generated artifacts. The resulting
report provides the labeled ground truth and enables users to get a
holistic picture of all the relevant traces existing in the generated RAM,
network and hard drive images.

Future research will extend the data synthesis framework with addi-
tional malware-specific commands, network protocols, encryption types
and persistence mechanisms to provide more configurable options for
the data synthesis process, including obfuscating malicious control traf-
fic and providing a variety of persistence techniques. In some places,
constants are already reserved for extensions such as reserved flags for
using raw TCP and providing full IPv6 support.

A limitation of the current framework is that the only dropper avail-
able is a Microsoft Office macro. Therefore, future work will implement
additional droppers to represent alternative infection vectors, including
a PDF document dropper.

Due to problems arising from the connectionless nature of the DNS
protocol, it will be necessary to include sequence numbers in DNS com-
munications to prevent file transfers from failing and transmitted com-
mands from being lost. Additionally, the current implementation only
uses the standard DNS port 53, which will be expanded.

References

[1] S. Abt and H. Baier, Are we missing labels? A study of the avail-
ability of ground truth in network security research, Proceedings of
the Third International Workshop on Building Analysis Datasets
and Gathering Experience Returns for Security, pp. 40–55, 2014.

[2] I. Baggili and F. Breitinger, Data sources for advancing cyber foren-
sics: What the social world has to offer, Proceedings of the AAAI
Spring Symposia – Sociotechnical Behavior Mining: From Data to
Decisions? pp. 6–9, 2015.

[3] Biometrics and Information Security Group (dasec), hystck-
malware-module, GitHub (github.com/dasec/hystck-malware-
module), 2022.

42 ADVANCES IN DIGITAL FORENSICS XVIII

[4] D. Brauckhoff, A. Wagner and M. May, FLAME: A flow-level
anomaly modeling engine, Proceedings of the Conference on Cyber
Security Experimentation and Test, article no. 1, 2008.

[5] B. Carrier, Open Source Digital Forensic Tools: The Legal Argu-
ment, @stake, Cambridge, Massachusetts, 2002.

[6] B. Carrier, Digital Forensics Tool Testing Images (www.dftt.
sourceforge.net), 2010.

[7] R. Cole, A. Moore, G. Stark and B. Stancill, STOMP 2 DIS:
Brilliance in the (visual) basics, Mandiant, Reston, Virginia (www.
mandiant.com/resources/stomp-2-dis-brilliance-in-the-vi
sual-basics), February 5, 2020.

[8] C. Cordero, E. Vasilomanolakis, N. Milanov, C. Koch, D. Hausheer
and M. Muhlhauser, ID2T: A DIY dataset creation toolkit for in-
trusion detection systems, Proceedings of the IEEE Conference on
Communications and Network Security, pp. 739–740, 2015.

[9] Digital Corpora, Home (www.digitalcorpora.org), 2021.

[10] X. Du, C. Hargreaves, J. Sheppard and M. Scanlon, TraceGen: User
activity emulation for digital forensic test image generation, Digital
Investigation, vol. 38(S), article no. 301133, 2021.

[11] S. Garfinkel, P. Farrell, V. Roussev and G. Dinolt, Bringing sci-
ence to digital forensics with standardized forensic corpora, Digital
Investigation, vol. 6(S), pp. S2–S11, 2009.

[12] T. Göbel, T. Schäfer, J. Hachenberger, J. Türr and H. Baier, A
novel approach for generating synthetic datasets for digital foren-
sics, in Advances in Digital Forensics XVI, G. Peterson and S.
Shenoi (Eds.), Springer, Cham, Switzerland, pp. 73–93, 2020.

[13] C. Grajeda, F. Breitinger and I. Baggili, Availability of datasets for
digital forensics – And what is missing, Digital Investigation, vol.
22(S), pp. S94–S105, 2017.

[14] A. Hadi, Digital Forensic Challenge Images (Datasets), Cham-
plain College, Burlington, Vermont (www.ashemery.com/dfir.
html), 2011.

[15] N. Harbour, Flare-On 7 challenge solutions, Mandiant, Reston, Vir-
ginia (www.mandiant.com/resources/flare-7-challenge-solut
ions), October 23, 2020.

[16] S. Hegt, Evil Clippy: MS Office maldoc assistant, Outflank Blog,
Amsterdam, The Netherlands (www.outflank.nl/blog/2019/05/
05/evil-clippy-ms-office-maldoc-assistant), May 5, 2019.

Lukner, Göbel & Baier 43

[17] J. Huang, A. Yasinsac and P. Hayes, Knowledge sharing and reuse in
digital forensics, Proceedings of the Fifth IEEE International Work-
shop on Systematic Approaches to Digital Forensic Engineering, pp.
73–78, 2010.

[18] D. Lillis, B. Becker, T. O’Sullivan and M. Scanlon, Current chal-
lenges and future research areas for digital forensic investigations,
Proceedings of the Eleventh Annual Conference on Digital Foren-
sics, Security and Law, 2016.

[19] J. Liu, Ten-year synthesis review: A baccalaureate program in com-
puter forensics, Proceedings of the Seventeenth Annual Conference
on Information Technology Education and the Fifth Annual Con-
ference on Research in Information Technology, pp. 121–126, 2016.

[20] M. McMahon and Contributors, What is pywinauto? (pywinauto.
readthedocs.io/en/latest), 2018.

[21] MITRE Corporation, Caldera, GitHub (github.com/mitre/cal
dera), 2021.

[22] C. Moch and F. Freiling, The Forensic Image Generator Generator
(Forensig2), Proceedings of the Fifth International Conference on IT
Security Incident Management and IT Forensics, pp. 78–93, 2009.

[23] C. Moch and F. Freiling, Evaluating the Forensic Image Generator
Generator, Proceedings of the International Conference on Digital
Forensics and Cyber Crime, pp. 238–252, 2011.

[24] P. Mockapetris, Domain Names – Implementation and Specifica-
tion, RFC 1035, 1987.

[25] monnappa22, HollowFind, GitHub (github.com/monnappa22/Hol
lowFind), 2016.

[26] National Institute of Standards and Technology, The CFReDS
Project, Gaithersburg, Maryland (www.cfreds.nist.gov), 2019.

[27] Outflank, Evil Clippy, GitHub (github.com/outflanknl/Evil
Clippy), 2021.

[28] Quarkslab, LIEF Project, GitHub (github.com/lief-project/
LIEF), 2022.

[29] M. Scanlon, X. Du and D. Lillis, EviPlant: An efficient digital foren-
sics challenge creation, manipulation and distribution solution, Dig-
ital Investigation, vol. 20(S), pp. S29–S36, 2017.

[30] Statista, Operating systems most affected by malware as of 1st
quarter 2020, New York (www.statista.com/statistics/680943/
malware-os-distribution), April 11, 2022.

44 ADVANCES IN DIGITAL FORENSICS XVIII

[31] The Honeynet Project, Challenges (www.honeynet.org/challen
ges), 2022.

[32] H. Visti, ForGe, Forensic Test Image Generator, GitHub (github.
com/hannuvisti/forge), 2015.

[33] H. Visti, S. Tohill and P. Douglas, Automatic creation of computer
forensic test images, in Computational Forensics, U. Garain and F.
Shafait (Eds.), Springer, Cham, Switzerland, pp. 163–175, 2015.

[34] K. Woods, C. Lee, S. Garfinkel, D. Dittrich, A. Russell and K.
Kearton, Creating realistic corpora for security and forensic educa-
tion, Proceedings of the Sixth Annual Conference on Digital Foren-
sics, Security and Law, 2011.

[35] Y. Yannikos, L. Graner, M. Steinebach and C. Winter, Data corpora
for digital forensics education and research, in Advances in Digital
Forensics X, G. Peterson and S. Shenoi (Eds.), Springer, Berlin
Heidelberg, Germany, pp. 309–325, 2014.

	REALISTIC AND CONFIGURABLE SYNTHESIS OF MALWARE TRACES IN WINDOWS SYSTEMS
	1. Introduction
	2. Related Work
	3. Forensic Dataset Synthesis Framework
	4. Malware Dataset Synthesis
	4.1 Requirements
	4.2 Framework Architecture

	5. Malware Synthesis Module Integration
	5.1 Data Synthesis Using Test Scripts
	5.2 Data Synthesis Using the Generator

	6. Generated Dataset Validation
	7. Conclusions
	References

