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Relevant EO Missions (DLR and European)
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Game Changer Copernicus-Programm

— Information und Wissen aus Erdbeobachtung unverzichtbar fur alle
geo-relevanten wissenschaftlichen und wirtschaftlichen Fragestellungen

— Hohe Akzeptanz satellitenbasierter Geoinformation

— Sentinel-Satellitenflotte als nachhaltige Hochleistungs-Datenquelle

— 15 TB/Tag
— 2020: >50 PB im DLR Datenarchiv

— Versorgungssicherheit bis weit Uber 2030

— Klassische Auswerteverfahren nicht mehr ausreichend = Ki

— Spezifische Qualitatsanforderungen und Anwendungsvielfalt
- nicht nur Adaption bekannter KI-Methoden, sondern neue Forschung

U
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Europe’s eyes on Earth
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Al for Earth Observation 50
New Aspects and Challenges

® TanDEM-X
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— Massive growth of free and open satellite data

30— m ERS-1/-2
— Increasing number of satellite missions
. i . u NOAA AVHRR
— Increasing spatial and spectral resolution 20l wuosr
® METOP GOME-2
H H H H m Others
— Global scale processing at high spatial resolution 10

— Generation of decadal time series el —
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— Google, Amazon et al. enter EO and provide data access and computing
capacity

— Machine learning has become the data analysis concept MACHINE

LEARNING
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Decadal Time Series for Global Change Research
DLR-DFD

TimeScan SnowPack Net Primary Productivity
25 years of 30 statistics of indices 18 years of daily snow cover 14 years

Global Urban Footprint WaterPack
DLR 30 years 16 years of daily inland water cover



ca. 1 million Pts/km2, 4D Information

A - FYViEFEFE x



Home Who We Are Activities Existential Risk GetInvolved Contact undung

fu ’ l‘{je Papers related to
of L11€

Deep Learning in RS

Web of Science

INSTITUTE

News: AI Biotech Nuclear Climate Partner Orgs

2014 2015 2016 2017

e

# DeepMind’s AlphaGo Zero Becomes Go Champion Without Human Input
DLR t essica Cussins




Institut fir Methodik der Fernerkundung
Remote Sensing Technology Institute

Deep Learning in EO — Hot Topic or Hype?

— Phase 1: Quick wins and quick papers
— Use known architectures and pre-trained networks to solve problems in EO that have been solved before

(“we can also do it with DL")
— Show that/whether DL gives better results than existing ML methods, e.qg. 86.7% = 89.3%

— Phase 2: Understand that EO is different from internet image labelling
— Design new architectures for specific problems
— Extend DL to non-conventional data and problems, e.g. interferometric SAR, social network data,

quantitative estimation of geophysical variables, ...

— Phase 3: Remember your EO expert knowledge and find how to integrate it into DL <We are here
— Re-implant physics, Bayes and domain expertise into the learning process
— Understand what DL really does with the data: “opening the black box”, information theory, estimation
theory, breaking the end-to-end-learning dogma, ...
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Hype or Frenzy?

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 55. NO. 7, JULY 2017 3639

Deep Recurrent Neural Networks for
Hyperspectral Image Classification

Lichao Mou, Student Member, IEEE, Pedram Ghamisi, Member, IEEE,
and Xiao Xiang Zhu, Senior Member, IEEE
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IEEE Geoscience and Remote Sensing Magazine, Dec. 2017

XIAO XIANG ZHU, DEVIS TUIA, LICHAO MOU, GUI-SONG XIA,
LIANGPEI ZHANG, FENG XU, AND FRIEDRICH FRAUNDORFER

Deep Learning
in Remote Sensing

cgmral to the looming paradigm shift toward data-in-
tensive science, machine-learning techniques are be-
coming increasingly important. In particular, deep learn-
ing has proven to be both a major breakthrough and an
extremely powerful tool in many fields. Shall we embrace
deep learning as the key to everything? Or should we resist
a black-box solution? These are controversial issues within
the remote-sensing community. In this article, we analyze
the challenges of using deep learning for remote-sensing
data analysis, review recent advances, and provide resourc-
es we hope will make deep learning in remote sensing
seem ridiculously simple. More importantly, we encourage
remote-sensing scientists to bring their expertise into deep
learning and use it as an implicit general model to tackle
unprecedented, large-scale, influential challenges, such as
climate change and urbanization.

MOTIVATION
Deep learning is the fastest-growing trend in big data analysis
and was deemed one of the ten breakthrough technologies
of 2013 [1]. It is characterized by neural networks (NNs) in-
volving usually more than two hidden layers (for this rea-
son, they are called deep). Like shallow NNs, deep NNs ex-
ploit feature representations learned exclusively from data,
instead of handcrafting features that are designed based
mainly on domain-specific knowledge. Deep learning
research has been extensively pushed by Internet compa-
nies, such as Google, Baidu, Microsoft, and Facebook, for
several image analysis tasks, including image indexing, seg-
mentation, and object detection.

Based on recent advances, deep learning is proving to
be a very successful set of tools, sometimes able to surpass

Digital Object Identifier 10.110 S.
Date of publication: 27 December 2017
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review and
list of resources
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IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE ~DECEMBER 2017

even humans in solving highly computational tasks (con-
sider, e.g., the widely reported Go match between Google’s
AlphaCo artificial intelligence program and the world Go
champion Lee Sedol). Based on such exciting successes,
deep learning is increasingly the model of choice in many
application fields.

For instance, convolutional NNs (CNNs) have proven to
be good at extracting mid- and high-level abstract features
from raw images by interleaving convolutional and pooling
layers (i.e., by spatially shrinking the feature maps layer by
layer). Recent studies indicate that the feature representa-
tions learned by CNNs are highly effective in large-scale

image recognition [2]-[4], object detection [5], [6], and se-
mantic segmentation [7], [8]. Furthermore, recurrent NNs
(RNNS), an important branch of the deep learning family,
have demonstrated significant achievement on a variety of
tasks involved in sequential data analysis, such as action
recognition [9], [10] and image captioning [11].

In the wake of this success and thanks to the increased
availability of data and computational resources, the use of
deep learning is finally taking off in remote sensing as well.
Remote-sensing data present some new challenges for deep
learning, because satellite image analysis raises unique is-
sues that pose difficult new scientific questions.

DECEMBER 2017 IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE
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Al4EO@IMF — Machine Learning Examples

Optical Patch

Focus on Deep Neural Networks
— Ship/vehicles/pederstrian detection and classification LR < TN

— Land use/land cover/settlement type classification

>
-4 +,128
*o,128 72

128 g ”l

SAR Patch

— Change detection
— Improved optical/SAR coregistration

— 2D and 3D optical/SAR fusion

— Synthesizing optical from SAR data and vice versa

Forward
model
Smart
sampling

— DSM-to-DTM conversion

Dimensionality
reduction
v

— Image-to-height conversion

Simulated Simulated Compressed
— Fusion of EO and social media data (image and text) Ll RS B o
. . . . . . ~ Machine I<
— Solving non-linear inverse problems in atmospheric sensing _learning ) B _
Training phase (offline)
Operational phase (real time)

— Merging multi-decadal satellite data for climate studies

Measured Inverse Retrieved
2 spectra model parameters
DLR TI.ITI

1 (same) / 0 (diff)
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Deep Learning for Detection of Ships, Vehicles etc.
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Deep Learning zur Fahrzeugdetektion
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Deep Learning zur Fahrzeugdetektion und -verfolgung

DLR
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Mapping to Support Autonomous Driving

Aerial LaneNet: Wavelet-Enhanced Cost-sensitive Symmetric CNN _ |
Street and parking place segmentation
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Lane marking segmentation

m Seyed Majid Azimi, Peter Fischer, Marco Kérner, and Peter Reinartz, Aerial LaneNet: Lane Marking Semantic Segmentation in Aerial Imagery using Wavelet-Enhanced
DLR Cost-sensitive Symmetric Fully Convolutional Neural Networks, IEEE TGRS, in review.
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Global Building Footprint Generation Using Planet Data

multi-scale resolution and update everyday for entire Earth surface

PlanetScope RapidEye SkySat
°3m *5m * 0.8m
37+ RGBNIR \ * RGB RE NIR *« RGBNIR
A . 175+ e * 13 ° 5
global high-resolution building footprint using multi-scale neural network
7 : - /,:,- :."-l
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Multi-Scale Network

conv 1x1x1, softmax mp




Institut fir Methodik der Fernerkundung
Remote Sensing Technology Institute

Deep Learning Hyperspectral Classification
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Recurrent Neural Networks for Hyperspectral Image Classification

Asphalt

Bl Meadows

Bl Metal Sheets
Gravel

Bl Trees
Shadow

Il Bare Soil

Pl Bitumen

‘ Il Bricks

University of Pavia, Italy Our Classification Map GroundTruth

RF-200 SVM-RBF CNN RNN-LSTM RNN-GRU-tanh RNN-GRU-PRetanh

OA 71.37 78.82 79.27 75.92 77.70 84.99

# m L. Mou, P. Ghamisi, and X. X. Zhu, “"Deep recurrent neural networks for hyperspectral image classification,” IEEETGRS, 2017.
DLR
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Neuronale Netze zur semantischen Anderungsdetektion in Satellitenbildern

Mar. 2000

conv. layers of T1 branch

unrolled recurrent layer
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19he| >}

conv. layers of T2 branch
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convolutional sub-network recurrent sub-network fc layers

Mar 2000 - Feb 2003 city expansion

soil change
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Non-conventional Applications
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IM2HEIGHT

Motivation

Height (e.g., DSM) is very important for many remote sensing tasks. But, often, such information is available. A
system estimating a physically plausible height map from a single image would be valuable.
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We learn an end-to-end trainable fully residual conv-deconv network with a skip connection that allows to shuttle
low-level visual information, e.g., object boundaries and edges, directly across the network.

# L. Mou and X. X. Zhu, "IM2HEIGHT: Height estimation from single monocular imagery via fully residual convolutional-deconvolutional network,” IEEE TGARS, submitted.
DLR



IM2HEIGHT

Applications
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L. Mou and X. X. Zhu, “IM2HEIGHT: Height estimation from single monocular imagery via fully residual convolutional-deconvolutional network,” IEEE TGARS, submitted.
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Cartosat-1 DTM
using Deep Learning
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Deep Learning/Fusion for Multimodal Data Analysis
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Improvement of Absolute Geometric Accuracy of Optical Images by Using High
Resolution SAR Images as Reference

OPTICAL: PRISM (accuracy several meters)
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Artificial Template Generation for Image Matching

Conditional Adversarial Network

Artificial Templates

Mutual Information Based Template Matching:
Optical image SAR image
] S heNe . Y

Optical image SAR template  SAR image

Score map

'I

Score map

Score map

Optical image SAR image

Score map

Merkle, Nina Marie und Auer, Stefan und Miller, Rupert und Reinartz, Peter (2018) Exploring the Potential of Conditional Adversarial Networks for Optical and SAR Image Matching. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing. IEEE Xplore. ISSN 1939-1404

Merkle, Nina und Fischer, Peter und Auer, Stefan und Miller, Rupert (2017) On the Possibility of Conditional Adversarial Networks for Multi-Sensor Image Matching. In: Proceedings of IGARSS 2017,
Seiten 1-4. IGARSS 2017, 23.-28. Jul. 2017, Fort Worth, Texas, USA.
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Deep Learning for Social Media Data Analysis
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Building Instance Classification from Street View Data by CNN

I apartment
church

B garage

" house

Outliers removal and - industrial

High-resolution Building instance Geotagged street view - classification bY ConvNek ‘ Building instance
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Tweets for Building Land-use Identification
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Manchen, Meggendorfer Strasse 76

Only a stay-at-home dad knows the feeling of achievement
once he rediscovers the floor in the kids' bedroom.
#stay-at-homedad

Moving Day is Coming. #munich #munchen #bavaria #bayern
#germany #deutschland #moving #umzug @ Moosach

#tbacktowork #hello2016 (@ BMW Group Forschungs- und
Innovationszentrum (FIZ) in Miinchen)

n Someone te 8l Following

I'm at BMW Group Forschungs- und Innovationszentrum (FI1Z)
in Minchen

n Someone o

"""Restaraunts near me"" @ItsDavidFan

Ready for a good long sleep at a hostel...charging batteries for
tomorrow! #oktoberfest @...
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What makes Deep Learning in Earth Observation Special?
Open Research Questions

— Classification and detection are only small fractions of EO problems

— Focus on retrieval of physical or bio-chemical variables
— High accuracy requirements (data generation is expensive)
— Traceability and reproducibility of results
— Quality measures (error bars, outlier flags,...) indispensable

— Decadal expert domain knowledge available
— Well-controlled data acquisition (radiometric, geometry, spectrometric, statistical, SNR,...)

— Data can be 5-dimensional (x-y-z-t-A), complex-valued and multi-modal
— SAR
— Lidar
— multi-/super-/hyperspectral
— GIS, OSM, citizen science, social media, ...

— Often: lack of sufficient training data
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