6 Componolit

Secure Systems Engineering

Practical Verification for
Software Engineers

Alexander Senier
CODE, 2020-11-11

Software Security
Security Vulnerabilities

m CVE-1999-0015 - 5.0 MEDIUM - HP-UX,
Windows, NetBSD, SunOS

= “Teardrop”
m CVE-2014-0160 - 7.5 HIGH - OpenSSL

= “Heartbleed”: Improper Restriction of
Operations within the Bounds of a
Memory Buffer (CWE-119)

m CVE-2017-0144 - 8.1 HIGH - Windows

= “EternalBlue”: Improper Input Validation
(CWE-20)

m CVE-2017-0785 - 6.5 MEDIUM - Android

= “BlueBorne”: Information Exposure
(CWE-200)

2020-11-11

m) Componolit

Secure Systems Engineering

CVE-2017-14315 - 7.5 HIGH - iOS

= “BlueBorne”: Improper Restriction of
Operations within the Bounds of a
Memory Buffer (CWE-119)

CVE-2018-10933 - 9.1 CRITICAL - libssh
= Improper Authentication (CWE-287)

CVE-2019-3560 - 7.5 HIGH - Fizz

= Loop with Unreachable Exit Condition
(CWE-835)

CVE-2019-11477 - 7.5 HIGH - Linux

= Integer Overflow or Wraparound
(CWE-190)

Software Security L] Componoljt
Integer Overflow in FiZZ Secure Systems Engineering

m Fizz*
= TLS 1.3 implementation by Facebook in C++
® Vulnerability 2

= Infinite loop triggered by unauthenticated remote attacker (denial of service)

2020-11-11 1) https://github.com/facebookincubator/fizz 2) https://securitylab.github.com/research/facebook-fizz-CVE-2019-3560

3

https://github.com/facebookincubator/fizz
https://securitylab.github.com/research/facebook-fizz-CVE-2019-3560

Software Security O ComPOn.O'.lt
How to pr‘event Such bugS? Secure Systems Engineering

m Software Quality Assurance = Applied by Facebook
= Code Reviews
= Testing
= Fuzzing
m Static Code Analysis
= Variant Analysis = Applied by Semmle (acquired by GitHub) using CodeQL

= Formal Verification

2020-11-11

Formal Verification m) Componolit
SPARK Secure Systems Engineering

m Programming Lanquage and Verification Toolset SI ‘ \I ll [
g g banguag s D04
n Based on Ada secure programming.

Compilable with GCC and LLVM
Interoperable with Ada, C, C++, Java

Customizable runtime

Contracts (preconditions, postconditions, invariants)

Open Source with commercial support

2020-11-11 https://lwww.adacore.com/about-spark

https://www.adacore.com/about-spark

SPARK 6 Componolit

Assurance Levels Secure Systems Engineering

Platinum

Full
unctional requirement?

Gold
Key integrity properties

Silver
Runtime errors

Bronze
Flow constraints

Stone
Safer, analyzable language subset

y
y

2020-11-11 https://lwww.adacore.com/about-spark

https://www.adacore.com/about-spark

SPARK 6 Componolit
Guarantees and Limitations Secure Systems Engineering

m Guarantees m Limitations

= Formal verification gives = Every proof (and in fact every
guarantees that traditional software) has assumptions
software quality assurance _ _ o
cannot provide = Proving higher-level properties is

_ harder

= Systems are secure and safe in o _
all known potentially problematic » Limited support for dynamic
situations systems

2020-11-11 https://lwww.adacore.com/about-spark

https://www.adacore.com/about-spark

SPARK 6 Componolit
Example: Integer OVerflOW in Fizz Secure Systems Engineering

type UIntl6 is range 0 .. 2**16 - 1,

12 declare

13 Length : UIntl6 := Read_UIntl6 (Cursor);
14 begin

15 Length := Length + 5;

16 Trim_Start (Buf, Length);

2020-11-11

SPARK 6 Componolit
Example: Integer OVerflow in FiZZ Secure Systems Engineering

type UIntl1l6 is range 0 .. 2**16 - 1;

12 declare

13 Length : UInt16 := Read_UInt16 (Cursor);
14 begin
15 Length := Length + 5;

16 Trim_Start (Buf, Length);

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...

plaintext_record_layer.adb:15:30: medium: range check might fail (e.g. when
Length = 65531)

2020-11-11 9

SPARK 6 Componolit
Applications 1n Security Secure Systems Engineering

m Rockwell Collins B Secunet m codelabs
Turnstile/SecureOne SINA MLW Muen

m MBDA m NVIDIA m ANSSI
EISR SPIFW WooKey

S

‘«

2020-11-11 .

Software Security
Securing Existing Software

m Current Situation

= Software usually written in unsafe languages (C, C++, ..

® Migration to Language Supporting Formal Verification
= Very expensive when done manually

m Options
= Only replace critical parts of software
= Use code generation

2020-11-11

m) Componolit

Secure Systems Engineering

)

11

Protocol Verification
RecordFlux

B Formal Specification of Messages
(and Protocol Sessions)

m Model Verification

m Generation of Verifiable Binary
Parsers

m Generation of Verifiable Message
Serializers

(Componolit

Secure Systems Engineering

Recordliux.

|— Fuzzer

(Legacy) [PEEES <>

(3ay) sa11epoN

1

1
Domain
Expert

2020-11-11 https://github.com/Componolit/RecordFlux | https://arxiv.org/abs/1910.02146

12

https://github.com/Componolit/RecordFlux
https://arxiv.org/abs/1910.02146

RecordFlux
Model

B Specification language enables precise definition of
binary formats (and protocol sessions)

m Definition of complex data formats with value
ranges, dependencies and restrictions

B Prevention of critical errors by automated
correctness proofs at model level

2020-11-11

6 Componolit

Secure Systems Engineering

Message_Type
(Message_Type)

Y
Payload_Length
(Length_Type)

Length = Payload_Length * 8

Payload
(Payload_Type)

Length = Message'Last - Payload'Last

Padding
(Payload_Type)

®

13

RecordFlux

Specification

Message_Type
(Message_Type)

Y
Payload_Length
(Length_Type)

Length = Payload_Length * 8

Payload

(Payload_Type)

Length = Message'Last - Payload'Last

Padding
(Payload_Type)

2020-11-11

6 Componolit

Secure Systems Engineering

Language

package TLS_Heartbeat is

type Message_Type is (HEARTBEAT_REQUEST => 1, HEARTBEAT_RESPONSE => 2)
with Size => 8;
type Length_Type is range 0 .. 2**14 - 20 with Size => 16;
type Heartbeat_Message is
message
Message_Type :
Payload_Length :
then Payload
with Length = Payload_Length * 8;
Payload : Payload_Type
then Padding
with Length = Message'lLast - Payload'Last;

Message_Type;
Length_Type

Padding : Payload_Type
then null
if ;

end message;

end TLS_Heartbeat;

14

m) Componolit

Secure Systems Engineering

RecordFlux
Guarantees and Limitations

m Guarantees S
. m Limitations
= Determinism
= Some message schemes and

* Liveness complex invariants not
= Reachability supported yet
= Coherency = Support for protocol sessions in

development

Completeness

2020-11-11

15

RecordFlux 6 CompOnO“t
COde Gener‘at ion Secure Systems Engineering

B Provable message parsers and serializers created in SPARK language
B Absence of runtime errors
B Functional correctness

= Parsers guarantee received messages comply with specification

= Serializers ensure creation of correct messages

2020-11-11 16

m) Componolit

Secure Systems Engineering

RecordFlux
Case Study: Verified TLS Parser

m Minimizing attack surface by ' Verifiad
securing message parsers

m Formalization of TLS 1.3 with

——e—Original

»
sl ? The maximum throughput
H Replacing C++ parser of Fizz TLS % is reduggd only slightly by
: = the verified parser.
library

m Critical vulnerabilities like CVE-
2019-35602 now prevented by

proven SPARK code 250 500 750 1000
Throughput (req/s)

2020-11-11 https://github.com/Componolit/fizz/

17

https://github.com/Componolit/fizz/

RecordFlux 6 Componollt

Pr.oj eCt GreenTLS Secure Systems Engineering

m Component-based high-assurance implementation of TLS 1.3
m Critical components in SPARK using RecordFlux
m Current State

= Complete message specification

= |nitial design and protocol specification

= [mplementation of code generator in progress

https://github.com/Componolit/GreenTLS

e Europa fordert Sachsen. SACHSEN
* * Diese MaBBnahme wird mitfinanziert
* * E S F e durch Steuermittel auf Grundlage des
** o * X von den Abgeordneten des Sichsischen
*)
- * W Landtags beschlossenen Haushaltes.

2020-11-11 Européische Union

'I

https://github.com/Componolit/GreenTLS

Practical Verification [Componoljt
ConClUSion Secure Systems Engineering

m Software Verification using SPARK
= Formal verification for software engineers
= Already used in industries where safety/security matters
= Flexible cost/benefit trade-off
m Protocol Verification using RecordFlux
= Ensuring correctness of critical part of software: communication protocols

= Reducing effort and implementation errors by high-level abstraction and
automation

2020-11-11 19

m) Componolit

QueS t ionS? Secure Systems Engineering

Alexander Senier
senier@componolit.com

@Componolit - componolit.com - github.com/Componolit

2020-11-11

