
Interactive Theorem Proving:
What it is and What it can do

An Academic Perspective

Tobias Nipkow

Fakultät für Informatik
TU München

What is a Proof?

A traditional mathematical proof is a natural language
proof sketch, possibly with many gaps:

Example
“... It is now easy to see that p1 ∗ · · · ∗ pn + 1 is also a
prime number.”

A complete formal proof is a (possibly looong) list of
atomic proof steps in some precisely fixed logic.

Example
A proof step: If P and P → Q then Q.

What is an ITP?

A system for the interactive construction
of a complete formal proof

The ideal: user sketches proof,
ITP checks proof and fills in details

The reality: user has to give many details

Why? Finding proofs cannot be automated completely

Checking complete formal proofs is automatic,
but complete formal proofs are very large

ITP tries to fill in details with
internal and external automatic provers

Interactive versus Automatic

Interactive: You can do anything,
but it takes work by an expert

Automatic: You can do only so much

USP: ITPs have very expressive logics

Reliability of ITPs

Most ITPs are based on a small(ish) kernel
implementing some well-studied logic

Every proof in the ITP has to go through that kernel

USP: ITP proofs are extremely trustworthy

The proof assistant universe

Theorema

ACL2

Agda

Coq

HOL

Lean

HOL Light

IsabelleMizar

PVS

What do ITP proofs look like?

Isabelle:

theorem prime(p) =⇒ √p /∈ Q
proof

from primep have p: 1 < p by (simp add: prime nat iff)

assume
√
p ∈ Q

then obtain m n :: nat where

n: n = 0 and sqrt rat: |√p| = m/n
and coprime m n by (rule Rats abs nat div natE)

have eq: m2 = p ∗ n2
proof

from n and sqrt rat have m = |√p| ∗ n by simp

then have m2 = (
√
p)2 ∗ n2

by (auto simp add: power2 eq square)

also have (
√
p)2 = p by simp

also have · · · ∗ n2 = p ∗ n2 by simp

finally show ?thesis using of nat eq iff by blast
...

How to construct an ITP proof?

See presentation of Jaap Boender

Some landmark ITP proofs

Some landmark ITP proofs:
mathematics

• Four Colour Theorem (Gonthier / Coq)

• Feit-Thompson Theorem (Gonthier et al. / Coq)

• Kepler Conjecture
(Hales et al. / HOL Light + Isabelle)

Kepler Conjecture (1611)

Theorem (Hales 1998). No packing of 3-dimensional
balls of the same radius has density greater than the
face-centered cubic packing.

What does all of this have to do with
software verification?

Same tools apply . . .

Compiler Correctness

compile :: source lang → target lang

Correctness theorem:

semanticstarget(compile(p)) = semanticssource(p)

Nontrivial proof!
Needs complete formal language definitions!

C/Java/. . . program correctness

We can prove that a program satisfies
some pre-condition/post-condition specification.

Example correctness theorem:

{ n < length(a) && n < length(b) }
copy(a,b,n)

{ ∀ i < n. a[i] = b[i] }

Requires nontrivial infrastructure for reasoning about
Hoare-triples {P}p{Q} is some language like C or Java

Some landmark ITP proofs:
computer science

• C compiler (Leroy / Coq)

• Mini-Java compiler (Klein & Nipkow / Isabelle)

• OS micro kernel (Klein, Heiser et al. / Isabelle)

Effort of landmark ITP proofs

• 4 – 20 person years (???)

• 60.000 – 300.000 lines of proof

Much shorter a second time around!

Academic impact

ITPs are standard tools
in the programming language community

They are increasingly used in OS, Networks, Crypto, . . .

From academia to industry:

AWS has a growing team of (a few years ago)

30+ world class experts using ITPs (and other tools)

to verify AWS software, eg encryption.

