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This presentation

▪ Presentation of example

▪ C code

▪ State

▪ Abstract specification (monadic, in Isabelle)

▪ Monadic version of the C program

▪ Refinement proof
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The C program

▪ Program adds n to each element of an array (of length l)

▪ The state of this program is the contents of the array test
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The C program

SIMPL version

▪ SIMPL translates C into an Isabelle representation

▪ 'Untrusted', so the translation needs to be as simple as possible

▪ Shallow embedding of datatypes

▪ Not necessarily easy to work with
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The C program

AutoCorres version

▪ Generated by AutoCorres from the SIMPL version

▪ Uses monads: canonical way of dealing with state

▪ Proof of equivalence between SIMPL and AutoCorres versions automatically generated
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The Isabelle specification

The state

▪ Abstract state: Isabelle record

▪ Native Isabelle list rather than a C array

▪ (we'll need to keep an eye on length!)

▪ Use nat rather than word
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The Isabelle specification

The monadic implementation

▪ Uses monads as well

▪ modify applies a function to the state
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The Isabelle specification

The state relation

▪ The state relation links the abstract state with the C state

▪ In short: the test list has the same length and contents as the test array
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Refinement proof

▪ A refinement proof shows that two functions are semantically equivalent

▪ Given two related start states, the states after execution of both abstract and C programs will be related

Start state (A)

add_list

End state (A)

Start state (C)

add_array

End state (C)
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Refinement proof

Isabelle formulation

▪ Some assumptions about the parameters (length of list, nat vs. word)

▪ Don't care about the return value (dc)

▪ One precondition for the C state: no overflow
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Refinement proof

Goal to solve

▪ Some administration beforehand: keep reference to initial state and precondition 

▪ Now to prove: modify does the same thing as our loop

▪ For this, we use an invariant
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Refinement proof

Loop invariant

▪ We do not necessarily know how many iterations a loop will go through (can depend on the state!)

▪ We must provide an invariant (for the loop postcondition) and a measure (for termination)

▪ Invariant must hold before the loop

▪ Invariant must hold after each iteration of the loop (assuming that it held before the iteration)

▪ Invariant must hold after the loop

▪ Measure must be a well-founded relation (for example the strict order on natural numbers)
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Refinement proof

Sketch of rest of proof

▪ Loop invariant holds at beginning (i = 0, so trivially true)

▪ Loop invariant holds throughout iterations

▪ All x < i will not have changed, so invariant holds

▪ If x = i, then we have just modified the x'th element, so we can use that knowledge

▪ After the loop, x = 5, so we know that all 5 elements have been updated

▪ State relation therefore holds
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Refinement proof

What do we now know?

▪ There is a refinement between add_list and add_array

▪ This means that any properties that hold for add_list also hold for add_array

▪ This allows a separation of concerns strategy:

▪ Proof of desired properties can be done using add_list (much easier)

▪ All the finicky C semantics are dealt with in the refinement proof
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Conclusion

▪ In order to verify a program using this technique:

▪ Write an abstract version in Isabelle (using monads and Isabelle's native data structures)

▪ Define a relation between the abstract state and the C state

▪ Show refinement between the abstract functions and the C functions

▪ (Not shown) Fit all functions together into a state machine

▪ Acta est fabula, plaudite
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