

2

Hands on: Watching software being verified

Dr. Jaap Boender

3

This presentation

▪ Presentation of example

▪ C code

▪ State

▪ Abstract specification (monadic, in Isabelle)

▪ Monadic version of the C program

▪ Refinement proof

4

The C program

▪ Program adds n to each element of an array (of length l)

▪ The state of this program is the contents of the array test

5

The C program

SIMPL version

▪ SIMPL translates C into an Isabelle representation

▪ 'Untrusted', so the translation needs to be as simple as possible

▪ Shallow embedding of datatypes

▪ Not necessarily easy to work with

6

The C program

AutoCorres version

▪ Generated by AutoCorres from the SIMPL version

▪ Uses monads: canonical way of dealing with state

▪ Proof of equivalence between SIMPL and AutoCorres versions automatically generated

7

The Isabelle specification

The state

▪ Abstract state: Isabelle record

▪ Native Isabelle list rather than a C array

▪ (we'll need to keep an eye on length!)

▪ Use nat rather than word

8

The Isabelle specification

The monadic implementation

▪ Uses monads as well

▪ modify applies a function to the state

9

The Isabelle specification

The state relation

▪ The state relation links the abstract state with the C state

▪ In short: the test list has the same length and contents as the test array

10

Refinement proof

▪ A refinement proof shows that two functions are semantically equivalent

▪ Given two related start states, the states after execution of both abstract and C programs will be related

Start state (A)

add_list

End state (A)

Start state (C)

add_array

End state (C)

11

Refinement proof

Isabelle formulation

▪ Some assumptions about the parameters (length of list, nat vs. word)

▪ Don't care about the return value (dc)

▪ One precondition for the C state: no overflow

12

Refinement proof

Goal to solve

▪ Some administration beforehand: keep reference to initial state and precondition

▪ Now to prove: modify does the same thing as our loop

▪ For this, we use an invariant

13

Refinement proof

Loop invariant

▪ We do not necessarily know how many iterations a loop will go through (can depend on the state!)

▪ We must provide an invariant (for the loop postcondition) and a measure (for termination)

▪ Invariant must hold before the loop

▪ Invariant must hold after each iteration of the loop (assuming that it held before the iteration)

▪ Invariant must hold after the loop

▪ Measure must be a well-founded relation (for example the strict order on natural numbers)

14

Refinement proof

Sketch of rest of proof

▪ Loop invariant holds at beginning (i = 0, so trivially true)

▪ Loop invariant holds throughout iterations

▪ All x < i will not have changed, so invariant holds

▪ If x = i, then we have just modified the x'th element, so we can use that knowledge

▪ After the loop, x = 5, so we know that all 5 elements have been updated

▪ State relation therefore holds

15

Refinement proof

What do we now know?

▪ There is a refinement between add_list and add_array

▪ This means that any properties that hold for add_list also hold for add_array

▪ This allows a separation of concerns strategy:

▪ Proof of desired properties can be done using add_list (much easier)

▪ All the finicky C semantics are dealt with in the refinement proof

16

Conclusion

▪ In order to verify a program using this technique:

▪ Write an abstract version in Isabelle (using monads and Isabelle's native data structures)

▪ Define a relation between the abstract state and the C state

▪ Show refinement between the abstract functions and the C functions

▪ (Not shown) Fit all functions together into a state machine

▪ Acta est fabula, plaudite

This document and its content is the property of HENSOLDT Cy ber GmbH. It shall not be communicated to any third party without the owner’s written consent. © Copy right HENSOLDT Cy ber GmbH 2020. All rights reserv ed.

Dr. Jaap Boender

Formal Verification Engineer

jacob.boender@hensoldt-cyber.de

HENSOLDT Cyber GmbH

Willy-Messerschmitt-Straße 3

82024 Taufkirchen

hensoldt-cyber.com

