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Applications of Quantum Computing: 
From Material Simulation to Quantum 

Optimization and „Quantum Machine Learning“
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Quantum Technology/
Quantum Information

Sabine Tornow

If information is represented by a quantum system then it is by definition quantum information

QUANTUM INFORMATION



FIRST AND SECOND QUANTUM REVOLUTION
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Wikipedia: Chip ion trap for quantum computing from 2011 at NIST.
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WHERE DO WE STAND?
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IBM 701
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QUANTUM COMPUTERS ARE GOOD AT
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• Quantum Physics/Quantum Chemistry

• Factoring

• Linear Algebra

• Searching

• Optimization

• Sampling

• Accelerating machine learning

https://quantumalgorithmzoo.orgSabine Tornow

Quantum computing is at the same time an enabler for 
incredible opportunities as well as one of the most 
unexpected threats to cybersecurity.



"I think the only obstruction to replacing RSA with a secure post-quantum 
cryptosystem will be will-power and programming time. I think it’s something 
we know how to do; it’s just not clear that we’ll do it in time."



QUANTUM COMPUTERS ARE GOOD AT
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• Quantum Physics/Quantum Chemistry

• Factoring

• Linear Algebra

• Searching

• Optimization

• Sampling

• Accelerating machine learning

Present quantum hardware enables 
development of quantum heuristics

https://quantumalgorithmzoo.orgSabine Tornow



QUANTUM COMPUTING

1. Quantum Computing

2. Applications:

•Material Simulation/Open Quantum Systems
•Optimisation
•Machine Learning

3. Error mitigation

8Sabine Tornow



|0⟩ |1⟩

SUPERPOSITION

QUBIT

|ψ⟩ = a0 |0⟩ + a1 |1⟩, a0, a1 ∈ ℂ,
n−1
∑
k=0

|ak |2 = 1

|0⟩

|1⟩
|ψ⟩
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|ψ⟩ = (a0
a1)

Sabine Tornow
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SIMULATING A QUANTUM SYSTEM 
ON CLASSICAL COMPUTERS
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Z-MEASUREMENT

| + ⟩ = 1
2

|0⟩ + 1
2

|1⟩

|0⟩

|1⟩
| + ⟩

State prepared in:

Superposition
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Z
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Z-MEASUREMENT

| + ⟩ = 1
2

|0⟩ + 1
2

|1⟩

|0⟩

|1⟩
| + ⟩

+1 −1

State prepared in:

|0⟩ |1⟩
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Z-MEASUREMENT
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|1⟩
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|0⟩
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|0⟩ + 1
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50 %
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State prepared in:
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ENTANGLEMENT

Most remarkable manifestation of quantum information is

Entanglement (Verschränkung)

}
This state of two qubits behaves in ways that 
cannot be explained by supposing that each qubit 
has a state of its own.

15Sabine Tornow

| + ⟩ = 1
2

|0⟩ + 1
2

|1⟩

|ψ⟩ = 1
2 ( |0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B)

A

B



ENTANGLEMENT
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|ψ⟩ = 1
2 ( |0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B)

Z

A



ENTANGLEMENT
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|ψ⟩ = 1
2 ( |0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B)

Z

A

Z

B



COMPARISON BETWEEN QUANTUM INFORMATION AND 
DISCRETE CLASSICAL PROBABILITY

x

0

1

p1

p0
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Probability  that bit is p0 (p1) 0 (1)

Qubit:  

Probability  that state is in 
 that state is in 

|ψ⟩ = a |0⟩ + b |1⟩
|a |2 |0⟩
|b |2 |1⟩

Sabine Tornow



19

State:  probability vector 

p0
p1
p2
p3

∑ pn = 1, 0 ≤ pn ≤ 1, pn ∈ ℝ

s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33

p0
p1
p2
p3

Time evolution:

Stochastic matrix

CLASSICAL PROBABILITY THEORY

Sabine Tornow
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CLASSICAL PROBABILITY THEORY (EXAMPLE)
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|0⟩

QUANTUM INFORMATION

|0⟩ |0⟩
|1⟩ |1⟩
|2⟩ |2⟩
|3⟩ |3⟩

State:  vector of probability amplitudes 

a0
a1
a2
a3

u00 u01 u02 u03
u10 u11 u12 u13
u20 u21 u22 u23
u30 u31 u32 u33

a0
a1
a2
a3

an ∈ ℂ
0 ≤ |an |2 ≤ 1

Sabine Tornow

|ψ⟩ |ψ′ ⟩U

|ψ′ ⟩ = U |ψ⟩
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QUANTUM INFORMATION (EXAMPLE)

Sabine Tornow
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|0⟩
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QUANTUM INFORMATION (EXAMPLE)

0 1/ 2 1/ 2 0
1/ 2 0 0 1/ 2
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|0⟩

|1⟩

|3⟩

|2⟩

The system is again in state .

The system is never in state  (interference).

Quantum computing is reversible.

|0⟩
|3⟩

Sabine Tornow



QUANTUM COMPUTING / QUANTUM GATES

U

24Sabine Tornow



QUANTUM COMPUTING / QUANTUM GATES

X = (0 1
1 0)

H = 1
2 (1 1

1 −1)

U

25Sabine Tornow

|0⟩ |1⟩

|0⟩ 1
2 ( |0⟩ + |1⟩) = | + ⟩



QUANTUM COMPUTING / QUANTUM GATES

CNOT =
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

U

26Sabine Tornow

| + ⟩
1
2 ( |00⟩ + |11⟩)

|0⟩

Control

Target
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QUANTUM COMPUTING PRINCIPLE

1. Prepare the quantum computer in an initial state: 

2. Apply gates (multiplication with a unitary matrix)

3. Perform a measurement

|ψ⟩ = |00...0⟩ = |0⟩ ⊗ |0⟩ . . . ⊗ |0⟩

Sabine Tornow
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0 1/ 2 1/ 2 0
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QUANTUM COMPUTER/ CLASSICAL COMPUTER 

N qubits with          2N states at the same time 

|ψ⟩ = a0 |0⟩ + a1 |1⟩ + a2 |2⟩ + a3 |3⟩ + a4 |4⟩ + a5 |5⟩ + a6 |6⟩ + a7 |7⟩

N bits with  2N states, one at a time 
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QUANTUM COMPUTER/ CLASSICAL COMPUTER 

A bit always has a definite value 

A qubit does not need to have a definite 

value until it is measured 
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QUANTUM COMPUTER/ CLASSICAL COMPUTER 

A bit can be copied 
 

A qubit in an unknown state cannot be copied 
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QUANTUM COMPUTER/ CLASSICAL COMPUTER 

Reading one bit does not change its value and 
has no effect on any other 
 

 

Reading a qubit may change its state (if the 
qubit being read is entangled with another 
qubit, reading one of the qubits will affect 
the other) 
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QUANTUM COMPUTING

1. Quantum Computing

2. Applications:

•Material Simulation/Open Quantum Systems
•Optimization
•Machine Learning
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http://pubs.rsc.org | doi:10.1039/C1FD00078K

Physical model
Physical System

Dissipative two-electron transfer:  A numerical renormalization group 
study, Sabine Tornow, Ralf Bulla, Frithjof B. Anders, and Abraham Nitzan 
Phys. Rev. B 78, 035434

OPEN QUANTUM SYSTEMS ON THE QUANTUM COMPUTER

understanding would have many relevant applications, 
e.g., energy storage

exponential growth of variables, efficiently simulating 
quantum many-body systems is hard on a classical 
computer



Physical model Pauli Hamiltonian

Bath

OPEN QUANTUM SYSTEMS ON THE QUANTUM COMPUTER

Hsys = − t12 σx + ϵ σz

Hsys−bath =
n

∑
k=1

g (σx ⊗ σx,k + σy ⊗ σy,k)



Quantum Circuit

OPEN QUANTUM SYSTEMS ON THE QUANTUM COMPUTER

Pauli Hamiltonian

Bath



Quantum Circuit
Quantum Chip

OPEN QUANTUM SYSTEMS ON THE QUANTUM COMPUTER



ELECTRON TRANSFER ON THE QUANTUM COMPUTER

Occupation probability

n time stepsn time steps

Occupation probabilityε = 0 ε ≠ 0
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OPEN QUANTUM SYSTEMS ON THE QUANTUM COMPUTER

Sabine Tornow Tornow, Gehrke, Helmbrecht, to be published
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OPEN QUANTUM SYSTEMS ON THE QUANTUM COMPUTER

Sabine Tornow Tornow, Gehrke, Helmbrecht, to be published

Occupation probability

n time steps
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OPEN QUANTUM SYSTEMS ON THE QUANTUM COMPUTER

Sabine Tornow Tornow, Gehrke, Helmbrecht, to be published

Occupation probability

n time steps



QUANTUM COMPUTING

1. Quantum Computing

2. Applications:

•Material Simulation/Open Quantum Systems
•Optimization
•Machine Learning

3. Error mitigation
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CLASSICAL DATA ON THE QUANTUM COMPUTER
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1. Number encoding:  3 → 11 → |11⟩

Sabine Tornow



CLASSICAL DATA ON THE QUANTUM COMPUTER
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1. Number encoding:  

2. Amplitude encoding 

 

3 → 11 → |11⟩

(x0
x1) → |x⟩ = x0 |0⟩ + x1 |1⟩

Sabine Tornow



CLASSICAL DATA ON THE QUANTUM COMPUTER
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1. Number encoding:  

2. Amplitude encoding 

3. Hamiltonian encoding:   ,  

 

 

3 → 11 → |11⟩

(x0
x1) → |x⟩ = x0 |0⟩ + x1 |1⟩

H = (x00 x01
x10 x11) U = e−i H t

Sabine Tornow



CLASSICAL DATA ON THE QUANTUM COMPUTER
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1. Number encoding:  

2. Amplitude encoding 

3. Hamiltonian encoding:   ,  

4. Hamiltonian encoding:    

 

 

3 → 11 → |11⟩

(x0
x1) → |x⟩ = x0 |0⟩ + x1 |1⟩

H = (x00 x01
x10 x11) U = e−i H t

H = ∑
k

hk σk − ∑
<k,l>

Jkl σk ⊗ σl

6

J12
J42
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J45
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CLUSTERING/OPTIMIZATION

H = ∑
k

hk σx
k − ∑

<k,l>
Jkl σz

k ⊗ σz
l

Jkl =

Sabine Tornow

Tornow, S. & Mewes, H. W. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res. 31, 6283-6289



The QC is an open quantum system itself

QPU
CPU
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OPTIMIZATION ON A QUANTUM/CLASSICAL COMPUTER

Sabine Tornow

Bath

System



Minimize  by 
optimising  ,  

⟨H⟩ ⃗β ⃗γ

-(γ) = e−iH1⋅γ/(β) = e−iH0⋅β

For the optimal choice of  and , 
 corresponds to the lowest energy of .

β γ
|ψ⟩ H

Example: Clustering

50

⟨H⟩

QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM 

Sabine Tornow
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QUANTUM COMPUTING

1. Quantum Computing

2. Applications:

•Material Simulation/Open Quantum Systems
•Optimization
•Machine Learning

3. Error mitigation
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MACHINE LEARNING ON THE QUANTUM COMPUTER

Encoder Decoder



MACHINE LEARNING ON THE QUANTUM COMPUTER

Encoder Decoder



QUANTUM COMPUTING

1. Quantum Computing

2. Applications:

•Material Simulation/Open Quantum Systems
•Optimisation
•Machine Learning

3. Error mitigation
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ERROR CORRECTION AND ERROR MITIGATION
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• Zero noise extrapolation

Sabine Tornow



ERROR CORRECTION AND ERROR MITIGATION
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• Zero noise extrapolation

Sabine Tornow



ERROR CORRECTION AND ERROR MITIGATION
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• Zero noise extrapolation

Sabine Tornow

N → 0



ERROR CORRECTION AND ERROR MITIGATION
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• Machine learning for error mitigation

Sabine Tornow

Xnoisy Xexact



ERROR CORRECTION AND ERROR MITIGATION
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• Machine learning for error mitigation

Sabine Tornow

Xnoisy Xexact

Predict



ERROR CORRECTION AND ERROR MITIGATION
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• Test symmetry

Sabine Tornow



ERROR CORRECTION AND ERROR MITIGATION
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• Quantum error detection

Sabine Tornow



ERROR CORRECTION AND ERROR MITIGATION
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• Quantum error correction

Sabine Tornow



QUANTUM COMPUTING

• Emerging quantum hardware enables 
evaluation of (heuristic) quantum algorithms

• Quantum advantage for near-term devices 
(NISQ) will only be achieved by error 
mitigation

Sabine Tornow, MUAS Thanks to:



LITERATURE

THE FUTURE IS QUANTUM
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