Trustworthy IoT for CPS RESILIENCE IN COMPLEX IOT ENVIRONMENTS

IoT4CPS – The Austrian IoT Flagship Project

The IoT4CPS project is part<mark>ially funded by the "ICT of</mark> the Fut<mark>ure</mark>" Program of the FFG and the BMK

JOANNEUM

0

ŢU

Bundesministerium Verkehr, Innovatio und Technologie

IoT in cyber-physical environments

- Large IIoT systems are distributed, dynamic and heterogenous
- CPS rely on digital units to interact with the physical environment
 - **Combination of IT and OT** raises new challenges

- \rightarrow IT focus on Security, Reliability and Privacy
- ightarrow OT focus on Safety, Reliability and Resilience
- \Rightarrow Security and dependability need to be addressed to reduce vulnerability
- \Rightarrow Specific tools and methods to cover all system levels (from sensor to product)
- ⇒ Coverage of whole product life-cycle is necessary to ensure long-term protection

Sources of faults

Faults & Threads in a Connected Vehicle

- (1) No signal, GPS traceability
- (2) Noise, stuck-to-theground, car spying
- (3) Bluetooth authentication flaws
- (4) Packet injection
- (5) Interference, denialof-service by flooding
- (6) Wrong control due radiation, replay attack
- (7) Late message, gain control access

Source: A Roadmap Toward the Resilient Internet of Things for Cyber-Physical Systems,

11.11.2020 Denise Ratasich, Faiq Khalid, Florian Geißler, Radu Grosu, Muhammad Shafique, Ezio Bartocci, IEEE Access, 2019

Resilience enables higher level of automatization

Dependability failures and security threats

		Physical		Network		Control		Information
Depend- ability	•	Broken connector Radiation	•	Msg. collision Desynchronization Interference	•	Input errors Deadline miss	•	Data corruption Bit flips Unavailability
Security	•	Phys. damage / intervention Sensor hacking Crypto attack	• • •	Replay Spoofing Jamming Interruption	•	Illegal contr. access Control signal interception	•	Eavesdropping Data poisoning
Long-term	•	Decay Environm. effects	•	Communication overload Protocol violation	•	Aging effects Upgrades or new requiremt.	•	Memory refresh Capacitor recharging

Detection

Recovery

Design & Methods

Verification & Analysis \gg IoT Lifecycle Mgmt.

IoT4CPS – Design Methods for Secure CPS

Dependability methods

Application Level:

- Identifies, detects, and understands potential security threats in the foundation level of system models.
- Platform Level:
 - Self-Healing by Structural Adaptation which allows systems to leverage implicit redundancy to achieve resiliency to failures.
- Network Level:
 - Recommender system for development of dependable IoT systems, to select protocols and system configurations for complex CPS.
- Physical Level:
 - **Cryptographic library** for forward-secure key exchange mechanism.
 - Tools and methods such as sensor security measures for discovering faulty and hacked sensors.

IoT4CPS – Security Verification & Analysis

- Human aspects
 - Human aspects in automated model checking of security protocols, formal verification of human errors

IoT Lifecycle Mgmt.

- Application Level
 - Threat modelling
 - Automated Security Test Generation
 - Pentest catalogue
- HW Level
 - Side-channel protected hardware implementation
 - Dynamically Exchangeable Runtime Checkers in HW
 - Formal hardware property checks
- Automotive Ethernet protection profile
- ➔ Analytical Toolbox for Anomaly Detection

Design & Methods

IoT Lifecycle Mgmt.

IoT4CPS – Analytical Toolbox

Anomaly detection for IoT at different level

- Hardware level
- System logs analysis
- Network traffic analysis
- Anomaly detection models

IoT4CPS Analytical Toolbox Architecture

Design & Methods >> Verification & Analysis

IoT Lifecycle Mgmt.

Digital Twin-based traceability

Further Challenges

- Resource limitations
 - How to extract/acquire and analyze a particular characteristics during run-time while considering the design and power constraints?
 - How to reduce the area and energy overhead of the data acquisition, i.e., power-ports, for runtime measurement and modeling?
- Real-time and scalability

11.11.2020

- How can we ensure coverage while maintaining timing behavior of the CPS?
- Interoperability and sharing
 - How can we cover devices which are shared between applications / networks?
- Interoperability and complexity
 - How to identify the reference communication behavior without any reference system?
 - How to model the communication behavior which can be used to identify the anomalous behavior?
 - How to model/identify the reference/golden behavior that covers the key characteristics and can be scalable?

Final Event

IoT4CPS Final Event in cooperation with Plattform Industrie 4.0

Register at: http://www.einladung.cc/industrie40/summit-industrie-40-2020

Thank you!

Contact:

Mario Drobics

AIT Austrian Institute of Technology

mario.drobics@ait.ac.at

+43 50 550-4810

More Info: <u>https://iot4cps.at/</u>

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Projectpartner

The IoT4CPS project is partially funded by the "ICT of the Future" Program of the FFG and the BMK.

